Log in

Properties of Coatings Based on Cerium Dioxide Obtained by Magnetron Sputtering

  • NEW METHODS OF TREATMENT AND PRODUCTION OF MATERIALS WITH REQUIRED PROPERTIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—The review presents the parameters of magnetron sputtering of coatings based on cerium dioxide and their relationship to the structure and key properties of coatings. The influence of the type of target, the introduction of oxygen into the sputtering medium, changes in sputtering power, bias voltage, type of substrate, and its temperature on the structure, mechanical properties, and hydrophobicity of CeO2-based coatings are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Lee, W., Jung, H.J., Lee, M.H., Kim, Y.B., Park, J.S., Sinclair, R., and Prinz, F.B., Oxygen surface exchange at grain boundaries of oxide ion conductors, Adv. Funct. Mater., 2012, vol. 22, no. 5, pp. 965–971. https://doi.org/10.1002/adfm.201101996

    Article  CAS  Google Scholar 

  2. Cho, S., Yoon, J., Kim, J.H., Zhang, X., Manthiram, A., and Wang, H., Microstructural and electrical properties of Ce0.9Gd0.1O1.95 thin-film electrolyte in solid-oxide fuel cells, J. Mater. Res., 2011, vol. 26, no. 7, pp. 854–859. https://doi.org/10.1557/jmr.2010.72

    Article  CAS  Google Scholar 

  3. Sønderby, S., Popa, P.L., Lu, J., Christensen, B.H., Almtoft, K.P., Nielsen, L.P., and Eklund, P., Strontium diffusion in magnetron sputtered gadolinia-doped ceria thin film barrier coatings for solid oxide fuel cells, Adv. Energy Mater., 2013, vol. 3, no. 7, pp. 923–929. https://doi.org/10.1002/aenm.201300003

    Article  CAS  Google Scholar 

  4. Tian, D., Lin, B., Yang, Y., Chen, Y., Lu, X., Wang, Z., Liu, W., and Traversa, E., Enhanced performance of symmetrical solid oxide fuel cells using a doped ceria buffer layer, Electrochim. Acta, 2016, vol. 208, pp. 318–324. https://doi.org/10.1016/j.electacta.2016.04.189

    Article  CAS  Google Scholar 

  5. Jaiswal, N., Tanwar, K., Suman, R., Kumar, D., Uppadhya, S., and Parkash, O., A brief review on ceria based solid electrolytes for solid oxide fuel cells, J. Alloys Compd., 2019, vol. 781, pp. 984–1005. https://doi.org/10.1016/j.jallcom.2018.12.015

    Article  CAS  Google Scholar 

  6. Raza, R., Zhu, B., Rafique, A., Naqvi, M.R., and Lund, P., Functional ceria-based nanocomposites for advanced low-temperature (300–600°C) solid oxide fuel cell: A comprehensive review, Mater. Today Energy, 2020, vol. 15, p. 100373. https://doi.org/10.1016/j.mtener.2019.100373

    Article  Google Scholar 

  7. Singh, B., Ghosh, S., Aich, S., and Roy, B., Low temperature solid oxide electrolytes (LT-SOE): A review, J. Power Sources, 2017, vol. 339, pp. 103–135. https://doi.org/10.1016/j.jpowsour.2016.11.019

    Article  CAS  Google Scholar 

  8. Paier, J., Penschke, C., and Sauer, J., Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment, Chem. Rev., 2013, vol. 113, no. 6, pp. 3949–3985. https://doi.org/10.1021/cr3004949

    Article  CAS  PubMed  Google Scholar 

  9. Bamwenda, G.R. and Arakawa, H., Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of \({\text{Ce}}_{{{\text{aq}}}}^{{4 + }}\) and \({\text{Fe}}_{{{\text{aq}}}}^{{3 + }}\) species, J. Mol. Catal. A: Chem., 2000, vol. 161, nos. 1–2, pp. 105–113. https://doi.org/10.1016/S1381-1169(00)00270-310.1016/S1381-1169(00)00270-3

  10. Gao, H., Qiao, B., Wang, T.-J., Wang, D., and **, Y., Cerium oxide coating of titanium dioxide pigment to decrease its photocatalytic activity, Ind. Eng. Chem. Res., 2014, vol. 53, no. 1, pp. 189–197. https://doi.org/10.1021/IE402539N

    Article  CAS  Google Scholar 

  11. Torrente-Murciano, L., Gilbank, A., Puertolas, B., Garcia, T., Solsona, B., and Chadwick, D., Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons, Appl. Catal., B, 2013, vols. 132–133, pp. 116–122. https://doi.org/10.1016/J.APCATB.2012.10.030

  12. Vorokhta, M., Matolínová, I., Dubau, M., Haviar, S., Khalakhan, I., Ševčíková, K., Mori, T., Yoshikawa, H., and Matolín, V., HAXPES study of CeOx thin film-silicon oxide interface, Appl. Surf. Sci., 2014, vol. 303, pp. 46–53. https://doi.org/10.1016/j.apsusc.2014.02.048

    Article  CAS  Google Scholar 

  13. Hierso, J., Boy, P., Vallé, K., Vulliet, J., Blein, F., Laberty-Robert, C., and Sanchez, C., Nanostructured ceria based thin films (≤1 μm) As cathode/electrolyte interfaces, J. Solid State Chem., 2013, vol. 197, pp. 113–119. https://doi.org/10.1016/j.jssc.2012.08.021

    Article  CAS  Google Scholar 

  14. Shen, D., Ma, H., Guo, C., Cai, J., Li, G., He, D., and Yang, Q., Effect of cerium and lanthanum additives on plasma electrolytic oxidation of AZ31 magnesium alloy, J. Rare Earths, 2013, vol. 31, pp. 1208–1213. https://doi.org/10.1016/S1002-0721(12)60428-1

    Article  CAS  Google Scholar 

  15. Cao, X.Q., Vassen, R., and Stoever, D., Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc., 2004, vol. 24, no. 1, pp. 1–10. https://doi.org/10.1016/S0955-2219(03)00129-8

    Article  CAS  Google Scholar 

  16. Lin, K.-S. and Chowdhury, S., Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: A review, Int. J. Mol. Sci., 2010, vol. 11, no. 9, pp. 3226–3251. https://doi.org/10.3390/ijms11093226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patsalas, P., Logothetidis, S., and Metaxa, C., Optical performance of nanocrystalline transparent ceria films, Appl. Phys. Lett., 2002, vol. 81, no. 3, pp. 466–468. https://doi.org/10.1063/1.1494458

    Article  CAS  Google Scholar 

  18. Fahrenholtz, W.G., O’Keefe, M.J., Zhou, H., and Grant, J.T., Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys, Surf. Coat. Technol., 2002, vol. 155, nos. 2–3, pp. 208–213. https://doi.org/10.1016/S0257-8972(02)00062-2

  19. Auffan, M., Rose, J., Orsiere, T., De Meo, M., Thill, A., Zeyons, O., Proux, O., Masion, A., Chaurand, P., Spalla, O., Botta, A., Wiesner, M.R., and Bottero, J.-Y., CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro, Nanotoxicology, 2009, vol. 3, no. 2, pp. 161–169. https://doi.org/10.1080/17435390902788086

    Article  CAS  Google Scholar 

  20. Huang, S.F., Li, Z.Y., Wang, X.Q., Wang, Q.X., and Hu, F.F., Cerium caused life span shortening and oxidative stress resistance in Drosophila melanogaster, Ecotoxicol. Environ. Saf., 2010, vol. 73, no. 1, pp. 89–93. https://doi.org/10.1016/j.ecoenv.2009.09.017

    Article  CAS  PubMed  Google Scholar 

  21. Shcherbakov, A.B., Zholobak, N.M., Spivak, N.Y., Ivanov, V.K., Ivanova, O.S., Baranchikov, A.E., Krysanov, E.Y., and Tretyakov, Y.D., Nanocrystalline ceria based materials-perspectives for biomedical application, Biophysics, 2011, vol. 56, no. 6, pp. 987–1004. https://doi.org/10.1134/S0006350911060170

    Article  Google Scholar 

  22. Karakoti, A.S., Munusamy, P., Hostetler, K., Kodali, V., Kuchibhatla, S., Orr, G., Pounds, J.G., Teeguarden, J.G., Thrall, B.D., and Baer, D.R., Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles, Eur. Appl. Surf. Int. Anal., 2011, vol. 44, no. 8, pp. 882–889. https://doi.org/10.1002/sia.5006

    Article  CAS  Google Scholar 

  23. Zhang, Y.W., Si, R., Liao, C.S., Yan, C.H., **ao, C.X., and Kou, Y., Facile alcohothermal synthesis, size-dependent ultraviolet absorption and enhanced CO conversion activity of ceria nanocrystals, J. Phys. Chem. B., 2003, vol. 107, no. 37, pp. 10159–10167. https://doi.org/10.1021/jp034981o

    Article  CAS  Google Scholar 

  24. Pierscionek, B.K., Li, Y., Yasseen, A.A., Colhoun, L.M., Schachar, R.A., and Chen, W., Nanoceria have no genotoxic effect on human lens epithelial cells, Nanotechnology, 2010, vol. 21, no. 3, p. 035102. https://doi.org/10.1088/0957-4484/21/3/035102

    Article  CAS  PubMed  Google Scholar 

  25. Azimi, G., Dhiman, R., Kwon, H.M., Paxson, A.T., and Varanasi, K.K., Hydrophobicity of rare-earth oxide ceramics, Nat. Mater., 2013, vol. 12, pp. 315–320. http://www.nature.com/doifinder/10.1038/nmat3545

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, J., Naka, T., Ohara, S., et al., Surface ligand assisted valence change in ceria nanocrystals, Phys. Rev. B, 2011, vol. 84, no. 4, p. 045411. https://doi.org/10.1103/PhysRevB.84.045411

    Article  CAS  Google Scholar 

  27. Shcherbakov, A.B., Zholobak, N.M., and Ivanov, V.K., Biological, biomedical and pharmaceutical applications of cerium oxide, in Cerium Oxide (CeO 2 ): Synthesis, Properties and Applications: Metal Oxides, Elsevier, 2020, pp. 279–358. https://doi.org/10.1016/B978-0-12-815661-2.00008-6

  28. Klochkov, V.K., Grigorova, A.V., Sedyh, O.O., and Malyukin, Yu.V., The influence of agglomeration of nanoparticles on their SOD mimetic activity, Colloids Surf., A, 2012, vol. 409, pp. 176–182. https://doi.org/10.1016/j.colsurfa.2012.06.019

    Article  CAS  Google Scholar 

  29. Zhu, A., Sun, K., and Petty, H.R., Titanium do** reduces superoxide dismutase activity, but not oxidase activity, of catalytic CeO2 nanoparticles, Inorg. Chem. Commun., 2012, vol. 15, pp. 235–237. https://doi.org/10.1016/j.inoche.2011.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCormack, R., Mendez, P., Barkam, S., Neal, C.J., Das, S., and Seal, S., Inhibition of nanoceria’s catalytic activity due to Ce3+ site specific interaction with phosphate ions, J. Phys. Chem. C, 2014, vol. 118, no. 33, pp. 18992–19006. https://doi.org/10.1021/jp500791j

    Article  CAS  Google Scholar 

  31. Alili, L., Sack, M., Karakoti, A.S., Teuber, S., Puschmann, K., Hirst, S.M., Reilly, C.M., Zanger, K., Stahl, W., Das, S., et al., Combined cytotoxic and antiinvasive properties of redox-active nanoparticles in tumor-stroma interactions, Biomaterials, 2011, vol. 32, no. 11, pp. 2918–2929. https://doi.org/10.1016/j.biomaterials.2010.12.056

    Article  CAS  PubMed  Google Scholar 

  32. Iranzo, O., Manganese complexes displaying superoxide dismutase activity: A balance between different factors, Bioorg. Chem., 2011, vol. 39, no. 2, pp. 73–87. https://doi.org/10.1016/j.bioorg.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  33. Xue, Y., Luan, Q., Yang, D., Yao, X., and Zhou, K., Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles, J. Phys. Chem. C, 2011, vol. 115, no. 11, pp. 4433–4438. https://doi.org/10.1021/jp109819u

    Article  CAS  Google Scholar 

  34. Shcherbakov, A.B., Zholobak, N.M., Ivanov, V.K., Ivanova, O.S., Marchevsky, A.V., Baranchikov, A.E., Spivak, N.Ya., and Tretyakov, Yu.D., Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria, Russ. J. Inorg. Chem., 2012, vol. 57, no. 11, pp. 1411–1418. https://doi.org/10.1134/S0036023612110137

    Article  CAS  Google Scholar 

  35. Shcherbakov, A.B., Ivanova, O.S., Spivak, N.Ya., Kozik, V.V., and Ivanov, V.K., Sintez i biomeditsinskie primeneniya nanodispersnogo dioksida tseriya (Synthesis and Biomedical Applications of Nanosized Cerium Dioxide), Tomsk: Tomsk State Univ., 2016.

  36. Benea, L., Simionescu, N., and Celis, J., Electro-codeposition of CeO2 nanoparticles into cobalt matrix to improve the tribocorrosion performances of Co/nano CeO2 composite layers in biological solution for medical applications, J. Mech. Behav. Biomed. Mater., 2020, vol. 101, p. 103443. https://doi.org/10.1016/j.jmbbm.2019.103443

    Article  CAS  PubMed  Google Scholar 

  37. Steenberge, S.V., Leroy, W.P., and Depla, D., Influence of oxygen flow and film thickness on the texture and microstructure of sputtered ceria thin films, Thin Solid Films, 2014, vol. 553, pp. 2–6. https://doi.org/10.1016/j.tsf.2013.11.049

    Article  CAS  Google Scholar 

  38. Barreca, D., Gasparotto, A., Tondello, E., Sada, C., Polizzi, S., and Benedetti, A., Nucleation and growth of nanophasic CeO2 thin films by plasma-enhanced CVD, Chem. Vap. Deposition, 2003, vol. 9, no. 4, pp. 199–206. https://doi.org/10.1002/cvde.200306247

    Article  CAS  Google Scholar 

  39. Balakrishnan, G., Sundari, S.T., Kuppusami, P., Mohan, P.C., Srinivasan, M.P., Mohandas, E., Ganesan, V., and Sastikumar, D., A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition, Thin Solid Films, 2011, vol. 519, no. 8, pp. 2520–2526. https://doi.org/10.1016/j.tsf.2010.12.013

    Article  CAS  Google Scholar 

  40. Oh, I.K., Kim, K., Lee, Z., Ko, K.Y., Lee, C.W., Lee, S.J., Myung, J.M., Lansalot-Matras, C., Noh, W., Dussarrat, C., Kim, H., and Lee, H.B.R., Hydrophobicity of rare earth oxides grown by atomic layer deposition, Chem. Mater., 2014, vol. 27, no. 1, pp. 148–156. https://doi.org/10.1021/CM503659D

    Article  Google Scholar 

  41. Belkind, A., Freilich, A., Lopez, J., Zhao, Z., Zhu, W., and Becker, K., Characterization of pulsed dc magnetron sputtering plasmas, New J. Phys., 2005, vol. 7, p. 90. https://doi.org/10.1088/1367-2630/7/1/090

    Article  CAS  Google Scholar 

  42. Kuz’michev, A.I., Magnetron sputtering systems, in Vvedenie v fiziku i tekhniku magnetronnogo raspyleniya (Introduction to the Physics and Technology of Magnetron Sputtering), Kyiv: Avers, 2008, vol. 1.

  43. Shi, Z., Shum, P., Zhou, Z., and Li, L.K.-Y., Effect of bias voltage on the properties of CeO2–x coatings prepared by magnetron sputtering, Surf. Coat. Technol., 2017, vol. 326, part B, pp. 411–416. https://doi.org/10.1016/j.surfcoat.2016.11.104

  44. Shi, Z., Shum, P., Zhou, Z., and Li, L.K.-Y., Effect of oxygen flow ratio on the wetting behavior, microstructure and mechanical properties of CeO2–x coatings prepared by magnetron sputtering, Surf. Coat. Technol., 2017, vol. 320, pp. 333–338. https://doi.org/10.1016/j.surfcoat.2016.12.055

    Article  CAS  Google Scholar 

  45. Khalakhan, I., Vorokhta, M., Chundak, M., and Matolín, V., Au-CeO2 nanoporous films/carbon nanotubes composites prepared by magnetron sputtering, Appl. Surf. Sci., 2013, vol. 267, pp. 150–153. https://doi.org/10.1016/j.apsusc.2012.08.106

    Article  CAS  Google Scholar 

  46. Yamamoto, S., Sugimoto, M., Koshikawa, H., Hakoda, T., and Yamaki, T., Orientational control of CeO2 films on sapphire substrates grown by magnetron sputtering, J. Cryst. Growth, 2017, vol. 468, pp. 262–267. https://doi.org/10.1016/j.jcrysgro.2016.12.038

    Article  CAS  Google Scholar 

  47. Kim, L., Kim, J., Jung, D., Park, C.-Y., Yang, C.-W., and Roh, Y., Effects of deposition parameters on the crystallinity of CeO2 thin films deposited on Si(100) substrates by r.f.-magnetron sputtering, Thin Solid Films, 2000, vol. 360, nos. 1–2, pp. 154–158. https://doi.org/10.1016/S0040-6090(99)01087-1

  48. Kabir, M.S., Munroe, P., Gonçales, V., Zhou, Z., and **e, Z., Structure and properties of hydrophobic CeO2–x coatings synthesized by reactive magnetron sputtering for biomedical applications, Surf. Coat. Technol., 2018, vol. 349, pp. 667–676. https://doi.org/10.1016/j.surfcoat.2018.06.031

    Article  CAS  Google Scholar 

  49. Mickan, M., Coddet, P., Vulliet, J., Caillard, A., Sauvage, T., and Thomann, A.-L., Optimized magnetron sputtering process for the deposition of gadolinia doped ceria layers with controlled structural properties, Surf. Coat. Technol., 2020, vol. 398, p. 126095. https://doi.org/10.1016/j.surfcoat.2020.126095

    Article  CAS  Google Scholar 

  50. Park, I.-W., Lin, J., Moore, J.J., Khafizov, M., Hurley, D., Manuel, M.V., and Allen, T., Grain growth and mechanical properties of CeO2–x films deposited on Si(100) substrates by pulsed dc magnetron sputtering, Surf. Coat. Technol., 2013, vol. 217, pp. 34–38. https://doi.org/10.1016/j.surfcoat.2012.11.068

    Article  CAS  Google Scholar 

  51. Zhu, D., Tan, X., Ji, L., Shi, Z., and Zhang, X., Preparation of transparent and hydrophobic cerium oxide films with stable mechanical properties by magnetron sputtering, Vacuum, 2021, vol. 184, p. 109888. https://doi.org/10.1016/j.vacuum.2020.109888

    Article  CAS  Google Scholar 

  52. Kabir, M.S., Zhou, Z., **e, Z., and Munroe, P., Scratch and wear resistance of hydrophobic CeO2–x coatings synthesized by reactive magnetron sputtering, Ceram. Int., 2020, vol. 46, no. 1, pp. 89–97. https://doi.org/10.1016/j.ceramint.2019.08.237

    Article  CAS  Google Scholar 

  53. Zenkin, S., Kos, S., and Musil, J., Hydrophobicity of thin films of compounds of low-electronegativity metals, J. Am. Ceram. Soc., 2014, vol. 97, no. 9, pp. 2677–3012. https://doi.org/10.1111/jace.13165

    Article  CAS  Google Scholar 

  54. Zhu, D., Liu, W., Zhao, R., Shi, Z., Tan, X., Zhang, Z., Li, Y., Ji, L., and Zhang, X., Microscopic insights into hydrophobicity of cerium oxide: Effects of crystal orientation and lattice constant, J. Mater. Sci. Technol., 2022, vol. 109, pp. 20–29. https://doi.org/10.1016/j.jmst.2021.08.064

    Article  CAS  Google Scholar 

  55. Zhu, D., Hu, C., Zhao, R., Tan, X., Li, Y., Mandic, V., Shi, Z., and Zhang, X., Fabrication of cerium oxide films with thickness and hydrophobicity gradients, Surf. Coat. Technol., 2022, vol. 430, p. 127985. https://doi.org/10.1016/j.surfcoat.2021.127985

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation grant no. 21-73-00268 (https://rscf.ru/project/21-73-00268/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Baikin, E. O. Nasakina, A. G. Kolmakov, K. V. Sergienko, M. A. Sudarchikova or M. A. Sevostyanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baikin, A.S., Nasakina, E.O., Kolmakov, A.G. et al. Properties of Coatings Based on Cerium Dioxide Obtained by Magnetron Sputtering. Inorg. Mater. Appl. Res. 15, 796–802 (2024). https://doi.org/10.1134/S2075113324700230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113324700230

Navigation