Log in

Mechanical Properties of Composite Rods Produced by Hot Gas Extrusion of the Nickel and Aluminum Powder Mixtures in a Steel Shell

  • COMPOSITE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—This paper presents the effect of hot gas extrusion (HGE) parameters on the phase composition and mechanical properties of composite rods composed of a core with reaction products of a Ni–Al powder mixture and a steel shell at room temperature. Composite rods are produced in three HGE modes depending on the initial extrusion temperature and the gas pressure in the chamber with parent materials. The phase composition of the produced materials is studied. It is found that the extent of the reaction of the powder mixture increases at higher temperatures of the initial HGE and, accordingly, low gas pressures, but unreacted nickel and aluminum particles remain at the lowest temperature of the initial HGE (at a higher gas pressure). Three-point bending tests show that the yield strength of the composite rod whose core contains plastic inclusions of the parent nickel and aluminum is higher than the yield strength of the steel rod. The rods with the maximum extent of the reaction are observed to have the highest microhardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Povarova, K.B., Kazanskaya, N.K., Lomberg, B.S., Bondarenko, Yu.A., and Shkolnikov, D.Yu., High-temperature structural (β + γ) alloys based on NiAl with increased low-temperature plasticity, Metallurgist, 1996, vol. 40, pp. 78–79. https://doi.org/10.1007/BF02346408

    Article  Google Scholar 

  2. Minay, E.J., Sutthisripok, W., Rawlings, R.D., and McShane, H.B., Possibilities for hot deformation reaction synthesis as a processing route for manufacturing nickel aluminide (Ni3Al) from elemental powders, J. Mater. Sci. Lett., 2001, vol. 20, no. 21, pp. 1979–1982. https://doi.org/10.1023/A:1013151222526

    Article  CAS  Google Scholar 

  3. Sheng, L.Y., Zhang, W., Guo, J.T., Wang, Z.S., Ovcharenko, V.E., Zhou, L.Z., and Ye, H.Q., Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion, Intermetallics, 2009, vol. 17, no. 7, pp. 572–577. https://doi.org/10.1016/j.intermet.2009.01.004

    Article  CAS  Google Scholar 

  4. Liu, E., Jia, J., Bai, Y., Wang, W., and Gao, Y., Study on preparation and mechanical property of nanocrystalline NiAl intermetallic, Mater. Des., 2014, vol. 53, pp. 596–601. https://doi.org/10.1016/j.matdes.2013.07.052

    Article  CAS  Google Scholar 

  5. Wang, D., Liang, Y., Ning, H., and Wang, B., Effects of Zr and Co on the microstructure and mechanical properties of NiAl-based alloys, J. Alloys Compd., 2021, vol. 883, p. 160815. https://doi.org/10.1016/j.jallcom.2021.160815

    Article  CAS  Google Scholar 

  6. Galyshev, S.N., Stolin, A.M., and Bazhin, P.M., Obtaining macrolayer materials based nickel illumined by the method free SHS-compression, Inzh. Fiz., 2009, no. 9, pp. 25–28.

  7. Awotunde, M., Adegbenjo, A., Ayodele, O., Okoro, M., Shongwe, M., and Olubambi, P., Influence of carbon nanotubes addition on the mechanical properties of nickel aluminide–NiAl, Mater. Today: Proc., 2020, vol. 28, no. 2, pp. 615–619. https://doi.org/10.1016/j.matpr.2019.12.231

    Article  CAS  Google Scholar 

  8. Ovcharenko, V.E., Boyangin, E.N., Myshlyaev, M.M., Ivanov, Yu.F., and Ivanov, K.V., Formation of a multigrain structure and its influence on the strength and plasticity of the Ni3Al intermetallic compound, Phys. Solid State, 2015, vol. 57, pp. 1293–1299. https://doi.org/10.1134/S1063783415070252

    Article  CAS  Google Scholar 

  9. Sheng, L.Y., Yang, F., **, T.F., Guo, J.T., and Ye, H.Q., Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion, Mater. Sci. Eng., A, 2012, vol. 55, pp. 131–138. https://doi.org/10.1016/j.msea.2012.06.042

    Article  CAS  Google Scholar 

  10. Galiev, F.F., Saikov, I.V., Berbentsev, V.D., Guluytin, A.V., Bugakov, V.I., Sachkova, N.V., Konovalikhin, S.V., and Alymov, M.I., High-temperature gas extrusion of a reactive Ni + Al powder mixture, Dokl. Phys., 2019, vol. 64, pp. 446–448. https://doi.org/10.1134/S1028335819120024

    Article  CAS  Google Scholar 

  11. Galiev, F.F., Saikov, I.V., Alymov, M.I., Konovalikhin, S.V., Sachkova, N.V., and Berbentsev, V.D., Composite rods by high-temperature gas extrusion of steel cartridges stuffed with reactive Ni–Al powder compacts: Influence of process parameters, Intermetallics, 2021, vol. 138, p. 107317. https://doi.org/10.1016/j.intermet.2021.107317

    Article  CAS  Google Scholar 

  12. Vaganov, V.E., Aborkin, A.V., Alymov, M.I., and Berbentsev, V.D., State of the art and the prospects of high-temperature gas extrusion to produce thin-section rods made of hard-to-deform, including nanostructured alloy, Russ. Metall. (Metally), 2015, vol. 2015, no. 9, pp. 732–738. https://doi.org/10.1134/S0036029515090141

    Article  Google Scholar 

  13. Feodos’ev, V.I., Soprotivlenie materialov (Materials Resistance), Moscow: Bauman Moscow State Tech. Univ., 1999.

  14. Farhat, H., Operation, Maintenance, and Repair of Land-Based Gas Turbines, Amsterdam: Elsevier, 2021. https://doi.org/10.1016/C2019-0-02860-9

  15. Goulet, J. and Boutin, J.P., Résistance des Matériaux, Paris: Dunod, 2002.

    Google Scholar 

  16. Petříček, V., Dušek, M., and Palatinus, L., Crystallographic computing system JANA2006: General features, Z. Kristallogr. – Cryst. Mater., 2014, vol. 229, no. 5, pp. 345–352. https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  17. Biswas, A. and Roy, S.K., Comparison between the microstructural evolutions of two modes of SHS of NiAl: Key to a common reaction mechanism, Acta Mater., 2004, vol. 52, no. 2, pp. 257–270. https://doi.org/10.1016/j.actamat.2003.08.018

    Article  CAS  Google Scholar 

  18. Sharafutdinov, M.R., Korchagin, M.A., Shkodich, N.F., Tolochko, B.P., Tsygankov, P.A., and Yagubova, I.Yu., Phases transformations in the Ni–Al system investigation by synchrotron radiation diffraction, Nucl. Instrum. Methods Phys. Res., Sect. A, 2007, vol. 575, nos. 1–2, pp. 149–151. https://doi.org/10.1016/j.nima.2007.01.046

  19. Ponomarev, V.I., Kovalev, I.D., Kovalev, D.Y., Konovalikhin, S.V., and Kochetov, N.A., SHS in the Ni–Al system: A TRXRD study of product patterning, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 2, pp. 101–105. https://doi.org/10.3103/S1061386214020095

    Article  CAS  Google Scholar 

  20. Gulyaev, A.P., Metallovedenie (Metal Science), Moscow: Metallurgiya, 1986.

    Google Scholar 

Download references

Funding

This work was performed within the scope of the state assignment for the Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences (ISMAN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. F. Galiev, I. V. Saikov, V. D. Berbentsev, A. E. Sytschev, G. R. Nigmatullina or M. I. Alymov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Bogacheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiev, F.F., Saikov, I.V., Berbentsev, V.D. et al. Mechanical Properties of Composite Rods Produced by Hot Gas Extrusion of the Nickel and Aluminum Powder Mixtures in a Steel Shell. Inorg. Mater. Appl. Res. 15, 772–778 (2024). https://doi.org/10.1134/S2075113324700205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113324700205

Navigation