Log in

Synthesis of Coatings Based on Graphene-Like Materials and Study of Their Physicochemical Properties

  • NEW TECHNOLOGIES FOR OBTAINING AND PROCESSING MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Dispersions of graphene oxide and its reduced form have been obtained and characterized by UV spectroscopy. Features of reduction of graphene oxide in the composition of coatings deposited onto solid substrates (aluminum, optical glass, and KDP single crystal) by interaction with different reducing agents (hydrazine hydrate, formalin, ascorbic and citric acids, and ammonium citrate) have been studied. Surface structures have been examined by Raman spectroscopy. The surface morphology of the coatings and defectiveness of the graphene-like materials obtained by reduction of the graphene oxide dispersions on the substrate surface have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

REFERENCES

  1. Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., The chemistry of graphene oxide, Chem. Soc. Rev., 2010, vol. 39, no. 1, pp. 228–240. https://doi.org/10.1039/b917103g

    Article  CAS  PubMed  Google Scholar 

  2. Dimeev, A.M. and Eigler, S., Graphene Oxide: Fundamentals and Applications, Chichester: Wiley, 2017.

    Google Scholar 

  3. Ziatdinov, A.M., Saenko, N.S., and Skrylnik, P.G., Graphene oxide and its thermally reduced nanostructured derivatives: Synthesis and comprehensive study of properties, Russ. J. Inorg. Chem., 2020, vol. 65, no. 1, pp. 133–145. https://doi.org/10.1134/S0036023620010210

    Article  CAS  Google Scholar 

  4. Ziatdinov, A.M., Saenko, N.S., and Skrylnik, P.G., Graphene oxide and its thermally reduced nanostructured derivatives: Synthesis and comprehensive study of properties, Russ. J. Inorg. Chem., 2020, vol. 65, no. 1, pp. 133–145. https://doi.org/10.1134/S0036023620010210

    Article  CAS  Google Scholar 

  5. Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., The chemistry of graphene oxide, Chem. Soc. Rev., 2010, vol. 39, no. 1, pp. 228–240. https://doi.org/10.1039/b917103g

    Article  CAS  PubMed  Google Scholar 

  6. Gao, W., Alemany, L.B., Ci, L., and Ajayan, P.M., New insights into the structure and reduction of graphite oxide, Nat. Chem., 2009, vol. 1, no. 5, pp. 403–408. https://doi.org/10.1038/nchem.281

    Article  CAS  PubMed  Google Scholar 

  7. Adetayo, A. and Runsewe, D., Synthesis and fabrication of graphene and graphene oxide: A review, Open J. Compos. Mater., 2019, vol. 9, pp. 207–229. https://doi.org/10.4236/ojcm.2019.92012

    Article  CAS  Google Scholar 

  8. Loh, K.P., Bao, Q., Eda, G., and Chhowalla, M., Graphene oxide as a chemically tunable platform for optical applications, Nat. Chem., 2010, vol. 2, no. 12, pp. 1015–1024. https://doi.org/10.1038/nchem.907

    Article  CAS  PubMed  Google Scholar 

  9. McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., and Aksay, I.A., Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater., 2007, vol. 19, no. 18, pp. 4396–4404. https://doi.org/10.1021/cm0630800

    Article  CAS  Google Scholar 

  10. **e, X., Zhou, Y., and Huang, K., Advances in microwave-assisted production of reduced graphene oxide, Front. Chem., 2019, vol. 7, no. 355. https://doi.org/10.3389/fchem.2019.00355

  11. Tai, X.H., Chook, S.W., Lai, C.W., Lee, K.M., Yang, T.C.K., Chong, S., and Juan, J.C., Effective photoreduction of graphene oxide for photodegradation of volatile organic compounds, RSC Adv., 2019, vol. 9, no. 31, pp. 18076–18086. https://doi.org/10.1039/C9RA01209E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. An, X., Simmons, T., Shah, R., Wolfe, C., Lewis, K.M., Washington, M., and Kar, S., Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications, Nano Lett., 2010, vol. 10, no. 11, pp. 4295–4301. https://doi.org/10.1021/nl903557p

    Article  CAS  PubMed  Google Scholar 

  13. Lee, J.H., Shin, D.W., Makotchenko, V.G., Nazarov, A.S., Fedorov, V.E., Yoo, J.H., and Yoo, J.-B., The superior dispersion of easily soluble graphite, Small, 2010, vol. 6, no. 1, pp. 58–62. https://doi.org/10.1002/smll.200901556

    Article  CAS  PubMed  Google Scholar 

  14. Si, Y. and Samulski, E.T., Synthesis of water soluble graphene, Nano Lett., 2008, vol. 8, no. 6, pp. 1679–1682. https://doi.org/10.1021/nl080604h

    Article  CAS  PubMed  Google Scholar 

  15. Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, no. 6, pp. 1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  16. Johra, F.T., Lee, J.-W., and Jung, W.-G., Facile and safe graphene preparation on solution based platform, J. Ind. Eng. Chem., 2014, vol. 20, no. 5, pp. 2883–2887. https://doi.org/10.1016/j.jiec.2013.11.022

  17. Wu, Y., Zhou, A., Yang, H., Wang, F., and Lu, K., 3D graphene-nitrogen doped carbon nanotubes network modified electrode as sensing materials for the determination of urapidil, Materials, 2018, vol. 11, no. 2, p. 322. https://doi.org/10.3390/ma11020322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paredes, J.I., Villar-Rodil, S., Martínez-Alonso, A., and Tascón, J.M.D., Graphene oxide dispersions in organic solvents, Langmuir, 2008, vol. 24, no. 19, pp. 10560–10564. https://doi.org/10.1021/la801744a

    Article  CAS  PubMed  Google Scholar 

  19. Çiplak, Z., Yildiz, N., and Çalimli, A., Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods, Fullerenes, Nanotubes Carbon Nanostruct., 2014, vol. 23, no. 4, pp. 361–370. https://doi.org/10.1080/1536383x.2014.894025

    Article  Google Scholar 

  20. Chen, J., Yao, B., Li, C., and Shi, G., An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 2013, vol. 64, pp. 225–229. https://doi.org/10.1016/j.carbon.2013.07.055

  21. Trikkaliotis, D.G., Mitropoulos, A.C., and Kyzas, G.Z., Low-cost route for top-down synthesis of over- and low-oxidized graphene oxide, Colloids Surf., A, 2020, vol. 600, p. 124928. https://doi.org/10.1016/j.colsurfa.2020.124928

    Article  CAS  Google Scholar 

  22. Attal, S., Thiruvengadathan, R., and Regev, O., Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV–visible absorption spectroscopy, Anal. Chem., 2006, vol. 78, no. 23, pp. 8098–8104. https://doi.org/10.1021/ac060990s

    Article  CAS  PubMed  Google Scholar 

  23. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., and Dai, H., Nano-graphene oxide for cellular imaging and drug delivery, Nano Res., 2008, vol. 1, no. 3, pp. 203–212. https://doi.org/10.1007/s12274-008-8021-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hudson, M.J., Hunter-Fujita, F.R., Peckett, J.W., and Smith, P.M., Electrochemically prepared colloidal, oxidised graphite, J. Mater. Chem., 1997, vol. 7, no. 2, pp. 301–305. https://doi.org/10.1039/a603982k

    Article  CAS  Google Scholar 

  25. Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., and Ruoff, R.S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem., 2006, vol. 16, no. 2, pp. 155–158. https://doi.org/10.1039/B512799H

    Article  CAS  Google Scholar 

  26. Reed, B.W. and Sarikaya, M., Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy, Phys. Rev. B, 2001, vol. 64, no. 19, p. 19540. https://doi.org/10.1103/PhysRevB.64.195404

    Article  CAS  Google Scholar 

  27. Cheung, W., Patel, M., Ma, Y., Chen, Y., **e, Q., Lockard, J.V., and He, H., π-Plasmon absorption of carbon nanotubes for the selective and sensitive detection of Fe3+ ions, Chem. Sci., 2016, vol. 7, no. 8, pp. 5192–5199. https://doi.org/10.1039/c6sc00006a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lai, Q., Zhu, S., Luo, X., Zou, M., and Huang, S., Ultraviolet-visible spectroscopy of graphene oxides, AIP Adv., 2012, vol. 2, no. 3, p. 032146. https://doi.org/10.1063/1.4747817

    Article  CAS  Google Scholar 

  29. Hidayah, N.M.S., Liu, W.-W., Lai, C.-W., Noriman, N.Z., Khe, C.-S., Hashim, U., and Lee, H.C., Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization, AIP Conf. Proc., 2017, vol. 1892, p. 150002. https://doi.org/10.1063/1.5005764

    Article  CAS  Google Scholar 

  30. Xu, Z., Gao, H., and Guoxin, H., Solution-based synthesis and characterization of a silver nanoparticle–graphene hybrid film, Carbon, 2011, vol. 49, no. 14, pp. 4731–4738. https://doi.org/10.1016/j.carbon.2011.06.078

    Article  CAS  Google Scholar 

  31. Li, J. and Liu, C., Ag/graphene heterostructures: Synthesis, characterization and optical properties, Eur. J. Inorg. Chem., 2010, vol. 8, pp. 1244–1248. https://doi.org/10.1002/ejic.200901048

    Article  CAS  Google Scholar 

  32. Tene, T., Tubon Usca, G., Guevara, M., Molina, R., Veltri, F., Arias, M., Caputi, L.S., and Vacacela Gomez, C., Toward large-scale production of oxidized graphene, Nanomaterials, 2020, vol. 10, no. 2, p. 279. https://doi.org/10.3390/nano10020279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaniyoor, A. and Ramaprabhu, S., A Raman spectroscopic investigation of graphite oxide derived graphene, AIP Adv., 2012, vol. 2, no. 3, p. 032183. https://doi.org/10.1063/1.4756995

    Article  CAS  Google Scholar 

  34. Muzyka, R., Drewniak, S., Pustelny, T., Chrubasik, M., and Gryglewicz, G., Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy, Materials, 2018, vol. 11, no. 7, p. 1050. https://doi.org/10.3390/ma11071050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ni, Z., Wang, Y., Yu, T., and Shen, Z., Raman spectroscopy and imaging of graphene, Nano Res., 2008, vol. 1, no. 4, pp. 273–291. https://doi.org/10.1007/s12274-008-8036-1

    Article  CAS  Google Scholar 

  36. Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., and Ferrari, A.C., Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 2011, vol. 11, no. 8, pp. 3190–3196. https://doi.org/10.1021/nl201432g

    Article  CAS  PubMed  Google Scholar 

  37. Rao, K.S., Senthilnathan, J., Liu, Y.-F., and Yoshimura, M., Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite, Sci. Rep., 2014, vol. 4, no. 1, p. 4237. https://doi.org/10.1038/srep04237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar, R., Mehta, B.R., Bhatnagar, M., S, R., Mahapatra, S., Salkalachen, S., and Jhawar, P., Graphene as a transparent conducting and surface field layer in planar Si solar cells, Nanoscale Res. Lett., 2014, vol. 9, no. 1, p. 349. https://doi.org/10.1186/1556-276x-9-349

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu, L. and Cheng, L., Graphite oxide under high pressure: A Raman spectroscopic study, J. Nanomater., 2013, vol. 2013, p. 731875. https://doi.org/10.1155/2013/731875

    Article  CAS  Google Scholar 

  40. Bajpai, R., Roy, S., Kulshrestha, N., Rafiee, J., Koratkar, N., and Misra, D.S., Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells, Nanoscale, 2012, vol. 4, no. 3, pp. 926–930. https://doi.org/10.1039/c2nr11127f

    Article  CAS  PubMed  Google Scholar 

  41. Jaworski, S., Wierzbicki, M., Sawosz, E., Jung, A., Gielerak, G., Biernat, J., and Chwalibog, A., Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent, Nanoscale Res. Lett., 2018, vol. 13, no. 1, p. 116. https://doi.org/10.1186/s11671-018-2533-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin, F., Wu, S., Wang, Y., Wu, L., Yuan, P., and Wang, X., Self-assembly of mildly reduced graphene oxide monolayer for enhanced Raman scattering, J. Solid State Chem., 2016, vol. 237, pp. 57–63. https://doi.org/10.1016/jssc.2016.01.015

  43. Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cançado, L.G., Jorio, A., and Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 2007, vol. 9, no. 11, pp. 1276–1290. https://doi.org/10.1039/b613962k

    Article  CAS  PubMed  Google Scholar 

  44. Dresselhaus, M.S., Dresselhaus, G., and Hofmann, M., Raman spectroscopy as a probe of graphene and carbon nanotubes, Philos. Trans. R. Soc., A, 2008, vol. 366, pp. 231–236. https://doi.org/10.1098/rsta.2007.2155

  45. Chernysheva, M.N., Rychagov, A.Y., Kornilov, D.Y., Tkachev, S.V., and Gubin, S.P., Investigation of sulfuric acid intercalation into thermally expanded graphite in order to optimize the synthesis of electrochemical graphene oxide, J. Electroanal. Chem., 2019, vol. 858, p. 113774. https://doi.org/10.1016/j.jelechem.2019.113774

    Article  CAS  Google Scholar 

  46. Ziatdinov, A.M., Saenko, N.S., and Skrylnik, P.G., Molecular and electronic structures and magnetic properties of multilayer graphene nanoclusters and their changes under the influence of adsorbed molecules, Russ. Chem. Bull., 2017, vol. 66, no. 5, pp. 837–848. https://doi.org/10.1007/s11172-017-1816-6

    Article  CAS  Google Scholar 

  47. Beams, R., Cançado, L.G., and Novotny, L., Raman characterization of defects and dopants in graphene, J. Phys.: Condens. Matter, 2015, vol. 27, no. 8, p. 083002. https://doi.org/10.1088/0953-8984/27/8/083002

    Article  CAS  PubMed  Google Scholar 

  48. Claramunt, S., Varea, A., López-Díaz, D., Velázquez, M.M., Cornet, A., and Cirera, A., The importance of interbands on the interpretation of the Raman spectrum of graphene oxide, J. Phys. Chem. C, 2015, vol. 119, no. 18, pp. 10123–10129. https://doi.org/10.1021/acs.jpcc.5b01590

    Article  CAS  Google Scholar 

  49. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., and Car, R., Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett., 2008, vol. 8, no. 1, pp. 36–41. https://doi.org/10.1021/nl071822y

    Article  CAS  PubMed  Google Scholar 

  50. Albers, P.W., Leich, V., Ramirez-Cuesta, A.J., Cheng, Y., Hönig, J., and Parker, S.F., The characterisation of commercial 2D carbons: Graphene, graphene oxide and reduced graphene oxide, Mater. Adv., 2022, vol. 3, pp. 2810–2826. https://doi.org/10.1039/D1MA01023A

    Article  CAS  Google Scholar 

  51. Walch, N.J., Nabok, A., Davis, F., and Higson, S.P.J., Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method, Beilstein J. Nanotechnol., 2016, vol. 7, pp. 209–219. https://doi.org/10.3762/bjnano.7.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Das, A., Chakraborty, B., and Sood, A.K., Raman spectroscopy of graphene on different substrates and influence of defects, Bull. Mater. Sci., 2008, vol. 31, no. 3, pp. 579–584. https://doi.org/10.1007/s12034-008-0090-5

    Article  CAS  Google Scholar 

  53. Ott, A., Verzhbitskiy, I.A., Clough, J., Eckmann, A., Georgiou, T., and Casiraghi, C., Tunable D peak in gated graphene, Nano Res., 2014, vol. 7, no. 3, pp. 338–344. https://doi.org/10.1007/s12274-013-0399-2

    Article  CAS  Google Scholar 

  54. Liu, P., Yao, Z., and Zhou, J., Mechanical, thermal and dielectric properties of graphene oxide/polyimide resin composite, High Perform. Polym., 2016, vol. 28, no. 9, pp. 1033–1042. https://doi.org/10.1177/0954008315613558

    Article  CAS  Google Scholar 

  55. Vecera, P., Eigler, S., Koleśnik-Gray, M., Krstić, V., Vierck, A., Maultzsch, J., and Hirsch, A., Degree of functionalisation dependence of individual Raman intensities in covalent graphene derivatives, Sci. Rep., 2017, vol. 7, no. 1, p. 45165. https://doi.org/10.1038/srep45165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. López-Díaz, D., López Holgado, M., García-Fierro, J.L., and Velázquez, M.M., Evolution of the Raman spectrum with the chemical composition of graphene oxide, J. Phys. Chem. C, 2017, vol. 121, no. 37, pp. 20489–20497. https://doi.org/10.1021/acs.jpcc.7b06236

    Article  CAS  Google Scholar 

  57. Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Vilani, C., Moutinho, M.V.O., Capaz, R.B., and Jorio, A., Quantifying ion-induced defects and Raman relaxation length in graphene, Carbon, 2010, vol. 48, no. 5, pp. 1592–1597. https://doi.org/10.1016/j.carbon.2009.12.057

    Article  CAS  Google Scholar 

  58. Zhou, M., Tian, T., Xuanfu, L., Sun, X., Zhang, J., Cui, P., Tang, J., and Qin, L.C., Production of graphene by liquid-phase exfoliation of intercalated graphite, Int. J. Electrochem. Sci., 2014, vol. 9, pp. 810–820.

    Article  Google Scholar 

  59. Abdolhosseinzadeh, S., Asgharzadeh, H., and Hyoung, S.K., Fast and fully-scalable synthesis of reduced graphene oxide, Sci. Rep., 2015, vol. 5, p. 10160. https://doi.org/10.1038/srep10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen, V.T., Le, H.D., Nguyen, V.C., Tam Ngo, T.T., Le, D.Q., Nguyen, X.N., and Phan, N.M., Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2013, vol. 4, no. 3, p. 035012. https://doi.org/10.1088/2043-6262/4/3/035012

    Article  CAS  Google Scholar 

  61. Lopez-Diaz, D., Delgado-Notario, J.A., Clerico, V., Diez, E., Merchan, M.D., and Velazquez, M.M., Towards understanding the Raman spectrum of graphene oxide: The effect of the chemical composition, Coatings, 2020, vol. 10, no. 6, p. 524. https://doi.org/10.3390/coatings10060524

    Article  CAS  Google Scholar 

  62. Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., and Casiraghi, C., Probing the nature of defects in graphene by Raman spectroscopy, Nano Lett., 2012, vol. 12, no. 8, pp. 3925–3930. https://doi.org/10.1021/nl300901a

    Article  CAS  PubMed  Google Scholar 

  63. Wu, J.-B., Lin, M.-L., Cong, X., Liu, H.-N., and Tan, P.-H., Raman spectroscopy of graphene-based materials and its applications in related devices, Chem. Soc. Rev., 2018, vol. 47, no. 5, pp. 1822–1873. https://doi.org/10.1039/C6CS00915H

    Article  CAS  PubMed  Google Scholar 

  64. Kamali, A.R. and Fray, D.J., Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite, Nanoscale, 2015, vol. 7, no. 26, pp. 11310–11320. https://doi.org/10.1039/C5NR01132A

    Article  CAS  PubMed  Google Scholar 

  65. Bruna, M. and Borini, S., Optical constants of graphene layers in the visible range, Appl. Phys. Lett., 2009, vol. 94, no. 3, p. 31901. https://doi.org/10.1063/1.3073717

    Article  CAS  Google Scholar 

  66. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S., Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater., 2010, vol. 22, no. 35, pp. 3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Belov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, D.V., Belyaev, S.N., Radishchev, D.B. et al. Synthesis of Coatings Based on Graphene-Like Materials and Study of Their Physicochemical Properties. Inorg. Mater. Appl. Res. 15, 506–522 (2024). https://doi.org/10.1134/S2075113324020102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113324020102

Keywords:

Navigation