Log in

Biodegradable porous scaffolds for the bone tissue regeneration

  • Materials for Ensuring Human Life Activity and Environment Protection
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Scaffolds made of recombinant spidroin and fibroin of Bombix mori silk were produced by the salt leaching technique. The regenerative properties of scaffold were evaluated in experiments with rats by implantation into bone wounds. According to the X-ray tomography data, the use of both types of biocompatible materials provides the restoration of the integrity of a bone. By analyzing the dynamics of regeneration, it was found that the use of spidroin leads to more rapid regeneration of bone tissue in the defect area as compared to silk fibroin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sevastyanov, V.I. and Perova, N.V., Bio-polymer heterogenic hydrogel Sphero®GEL—an injection biodegradable implant for substitutive and regenerative medicine, Prakt. Medits., 2014, no. 8, pp. 110–116.

    Google Scholar 

  2. Kirsanova, L.A., Baranova, N.V., Bubentsova, G.N., Skaletskaya, G.N., Perova, N.V., Sevastyanov, V.I., and Skaletsky, N.N., Influence of microstructured collagen hydrogel on pancreatic islet cell cultures, Vestn. Transplantol. Iskusstv. Organov, 2014, no. 1, pp. 29–33.

    Google Scholar 

  3. Sevastyanov, V.I. and Kirpichnikov, M.P., Biosovmestimye materialy (Biocompatible Materials), Moscow: MIA, 2011.

    Google Scholar 

  4. Wadbua, P., Promdonkoy, B., Maensiri, S., and Siri, S., Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori, Int. J. Biolog. Macromolec., 2010, vol. 46, no. 5, pp. 493–501.

    Article  CAS  Google Scholar 

  5. Tanaka, K., Inoue, S., and Mizuno, S., Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori, Insect Biochem. Molec. Biol., 1999, vol. 29, no. 3. pp. 269–276.

    Article  CAS  Google Scholar 

  6. Ho, W., Single-molecule chemistry, J. Chem. Phys., 2002, vol. 117, no. 24, pp. 11033–11061.

    Article  CAS  Google Scholar 

  7. Vepari, C. and Kaplan, D.L., Silk as a biomaterial, Progr. Polym. Sci., 2007, vol. 32, nos. 8–9, pp. 991–1007.

    Article  CAS  Google Scholar 

  8. Scherer, M.P., Frank, G., and Gummer, A.W., Experimental determination of the mechanical impedance of atomic force microscopy cantilevers in fluids up to 70 kHz, J. Appl. Phys., 2000, vol. 88, no. 5, pp. 2912–2920.

    Article  CAS  Google Scholar 

  9. Smith, R.K., Lewis, P.A., and Weiss, P.S., Patterning selfassembled monolayers, Progr. Surf. Sci., 2004, vol. 75, nos. 1–2, pp. 1–68.

    Article  CAS  Google Scholar 

  10. Shen, Z.Q., Hu, J., Wang, J.L., and Zhou, Y.X., Comparison of polycaprolactone and starch/polycaprolactone blends as carbon source for biological denitrification, Int. J. Environ. Sci. Technol., 2014, vol. 12, no. 4, pp. 1235–1242.

    Article  Google Scholar 

  11. Kluge, J.A., Rabotyagova, O., Leisk, G.G., and Kaplan, D.L., Spider silks and their applications, Trends in Biotechnol., 2008, vol. 26, no. 5, pp. 244–251.

    Article  CAS  Google Scholar 

  12. Sponner, A., Schlott, B., Vollrath, F., Unger, E., Grosse, F., and Weisshart, K., Characterization of the protein components of Nephila clavipes dragline silk, Biochemistry, 2005, vol. 44, no. 12, pp. 4727–4736.

    Article  CAS  Google Scholar 

  13. Yang, J., Barr, L.A., Fahnestock, S.R., and Liu, Z.B., High yield recombinant silk-like protein production in transgenic plants through protein targeting, Transgenic Res., 2005, vol. 14, no. 3, pp. 313–324.

    Article  CAS  Google Scholar 

  14. Wen, H., Lan, X., Zhang, Y., Zhao, T., Wang, Y., Kajiura, Z., and Nakagaki, M., Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons, Mol. Biol. Rep., 2010, vol. 37, no. 4, pp. 1815–1821.

    Article  CAS  Google Scholar 

  15. Bogush, V.G., Sokolova, O.S., Davydova, L.I., Klinov, D.V., Sidoruk, K.V., Esipova, N.G., Neretina, T.V., Orchanskyi, I.A., Makeev, V.Yu., Tumanyan, V.G., Shaitan, K.V., Debabov, V.G., and Kirpichnikov, M.P., A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins, J. Neuroimm. Pharmacol.: The Official J. Soc. on Neuroimm. Pharmacol., 2009, vol. 4, no. 1, pp. 17–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Sevastianov or I. I. Agapov.

Additional information

Original Russian Text © O.I. Agapova, T.V. Druzhinina, K.V. Trofimov, V.I. Sevastianov, I.I. Agapov, 2015, published in Perspektivnye Materialy, 2015, No. 8, pp. 17–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agapova, O.I., Druzhinina, T.V., Trofimov, K.V. et al. Biodegradable porous scaffolds for the bone tissue regeneration. Inorg. Mater. Appl. Res. 7, 219–225 (2016). https://doi.org/10.1134/S2075113316020027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316020027

Keywords

Navigation