Log in

State-of-the-Art Strapdown Airborne Gravimeters: Analysis of the Development

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper analyzes the development of strapdown inertial airborne gravimeters, which have significant advantages over gyrostabilized gravimeters in terms of size, power consumption and cost and substantially expand the capabilities of gravity survey. Technical solutions are described that make implementation of strapdown airborne gravimeters possible. The trends in their development are discussed, including integration of data from strapdown and gyrostabilized gravimeters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Shimbirev, B.P., Teoriya figury Zemli (Theory of the Earth’s Figure), Moscow: Nedra, 1975.

  2. Ogorodova, L.V., Shimbirev, B.P., and Yuzefovich, A.P., Gravimetriya (Gravimetry), Moscow: Nedra, 1978.

  3. Dehlinger, P., Marine Gravity, Elsevier, 1978.

    Google Scholar 

  4. Panteleev, V.L., Osnovy morskoi gravimetrii (Fundamentals of Marine Gravimetry), Moscow: Nedra, 1983.

  5. Torge, W., Gravimetry, Berlin: de Gruyter, 1989.

  6. Seeber, G., Satellite Geodesy: Foundations, Methods and Applications, Berlin: de Gruyter, 2003, second edition. https://doi.org/10.1515/9783110200089

  7. Hofmann-Wellenhof, B. and Moritz, H., Physical Geodesy, Springer, 2006.

    Google Scholar 

  8. Gravimetriya i geodeziya (Gravimetry and Geodesy), Brovar, B.V., Ed., Moscow: Nauchnyi mir, 2010.

  9. Becker, D., Advanced Calibration Methods for Strapdown Airborne Gravimetry, PhD thesis, Technische Universität Darmstadt, 2016.

  10. Methods and Technologies for Measuring the Earth’s Gravity Field Parameters, Peshekhonov, V.G. and Stepanov, O.A., Eds., Springer, 2022. https://doi.org/10.1007/978-3-031-11158-7

  11. Jensen, T.E., Airborne Strapdown Gravity Measurements for Geodesy and Geophysics, Technical University of Denmark, 2018.

    Google Scholar 

  12. Molev, V.P., Metodika i tekhnika nazemnoi gravimetricheskoi s’’emki (Methods and Facilities for the Ground Gravity survey), Vladivostok: Far Eastern Federal University, 2019.

  13. Koneshov, V.N., Mikhailov, P.S., Solov’ev, V.N., and Zheleznyak, L.K., Modern global models of the Earth’s gravity field in the World Ocean: Accuracy estimates and application prospects, 33-ya konferentsiya pamyati N.N. Ostryakova (33rd Conference in Memory of N.N. Ostryakov), St. Petersburg: Elektropribor, 2022.

  14. GOST (State Standard) 24284-80: Gravimetric and Magnetic Exploration. Terms and definitions, 1980.

  15. Bolotin, Yu.V. and Golovan, A.A., Methods of inertial gravimetry, Moscow University Mechanics Bulletin, 2013, vol. 68, no. 5, pp. 117–125.

    Article  MATH  Google Scholar 

  16. Schwarz, K.P., Inertial surveying and geodesy, Reviews of Geophysics, 1983, vol. 21, no. 4, pp. 878-890.

    Article  Google Scholar 

  17. Wei, M. and Schwarz, K.P., Flight test results from a strapdown airborne gravity system, Journal of Geodesy, 1998, vol. 72, no. 6, pp. 323–332.

    Article  Google Scholar 

  18. Panteleev, V.L., Problems in inertial gravimetry, Izvestia vuzov. Geologiya i razvedka, 1997, no. 26, pp. 113–122.

  19. Panteleev, V.L. and Levitskaya, Z.N., Major problems in inertial vector gravimetry, Izvestiya vuzov. Geodeziya i aerofotos''emka, 2000, no. 1, pp. 77–91.

  20. Panteleev, V.L., Fil’tratsiya v zadachakh inertsial’noi gravimetrii (Filtering in Inertial Gravimetry), LAP LAMBERT Academic Publishing, 2012.

  21. Kwon, J.H., Airborne vector gravimetry using GPS/INS, Report No.453, The Ohio State University, Columbus, Ohio 43210–1275, April 2000.

  22. Tyuvin, A.V., Afonin, A.A., and Sulakov, A.S., Using functionally redundant accelerometer units in strapdown navigation gravimetric systems, Trudy MAI, 2016, no. 91.

  23. Schwarz, K.P., Geoid profiles from an integration of GPS satellite and inertial data, Bolletino di Geodesia e Scienze Affini, Anno XLVI, 1987, no. 2, pp. 117–131.

  24. Jekeli, C. and Kwon, J.H., Results of airborne vector (3-D) gravimetry, Geophysical Research Letters, 1999, vol. 26, no. 23, pp. 3533–3536.

    Article  Google Scholar 

  25. Jekeli, C. and Kwon, J., Geoid profile determination by direct integration of GPS/INS vector gravimetry, Journal of Geophysical Research, 2002, vol. 107, no. B10. https://doi.org/101029/2001JBod626

  26. Vasco, D.W., Resolution and variance operators of gravity and gravity gradiometry, Geophysics, 1989, vol. 54, no. 7, pp. 889–899.

    Article  Google Scholar 

  27. Pawlowski, R. Gravity gradiometry in resource exploration, The Leading Edge, 1998, vol. 17, no. 1, pp. 51–52.

    Article  Google Scholar 

  28. Jekeli, C., A review of gravity gradiometer survey system data analysis, Geophysics, 1993, vol. 58, no. 4, pp. 508–514.

    Article  Google Scholar 

  29. Zlotnikov, D., Superior detective work: The promise of airborne gravity gradiometry. Earth Explorer, Energy Report, June 2011, pp. 5–7.

  30. Evstifeev, M.I., The state of the art in the development of onboard gravity gradiometers, Gyroscopy and Navigation, 2017, vol. 8, no. 1, pp. 68–79. https://doi.org/10.1134/S2075108717010047

    Article  Google Scholar 

  31. Dzhilavdari, I.Z. and Riznookaya, N.N., Development steps and state of the art in onboard gravity gradiometers, Pribory i metody izmerenii, 2016, vol. 7, no. 3, pp. 235–246.

  32. Jekeli, C., Theoretical fundamentals of airborne gradiometry, Airborne Gravity for Geodesy Summer School, 23–27 May 2016.

  33. Veryaskin, A.V. Gravity, Magnetic and Electromagnetic Gradiometry, IOP Publishing Ltd, 2021, second edition.

    Book  Google Scholar 

  34. Hein, G.W., Progress in airborne gravimetry: Solved, open and critical problems, Proceedings of the IAG Symposium on Airborne Gravity Field Determination, IUGG XXI General Assembly, Boulder, Colorado, USA, July 2−14 1995, pp. 3–11.

  35. Kwon, J.H. and Jekeli, C., A new approach for airborne vector gravimetry using GPS/INS, Journal of Geodesy, 2001, vol. 74, pp. 690–700. https://doi.org/10.1007/s001900000130

    Article  Google Scholar 

  36. Hannah, J., Airborne gravimetry: A status report, Prepared for the Surveyor General Land Information New Zealand, Otago University, New Zealand, 2001.

  37. Bolotin, Yu.V., Golovan, A.A., and Parusnikov, N.A., Uravneniya aerogravimetrii. Algoritmy i rezul’taty ispytanii (Airborne Gravimetry Equations. Test Algorithms and Results), Moscow: Moscow State University, 2002.

  38. Harlan, R.B., Eotvos corrections for airborne gravimetry, Journal of Geophysical Research, 1968, vol. 73, pp. 4675–4679. https://doi.org/10.1029/JB073i014p04675

    Article  Google Scholar 

  39. Groves, P.D., Principles of GNSS, Inertial and Multisensor Integrated Navigation Systems, Boston, London: Artech House, 2013, second edition.

    MATH  Google Scholar 

  40. Selivanova, L.M. and Shevtsova, E.V., Intertsial’nye navigatsionnye sistemy. (Inertial navigation systems), Part 1, Odnokanal’nye intertsial’nye navigatsionnye sistemy (Single-channel inertial navigation systems), Moscow: Bauman Moscow State Technical University, 2012.

  41. Johann, F., Becker, D., Becker, M., Forsberg, R., and Kadir, M. The direct method in strapdown airborne gravimetry – A Review, Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 2019, vol. 144, no. 5. https://doi.org/10.12902/zfv-0263-2019

  42. Andreev, V.D., Teoriya inertsial’noi navigatsii. Avtonomnye sistemy (Theory of Inertial Navigation. Autonomous Systems), Moscow: Nauka, 1966.

  43. Britting, K.R., Inertial navigation systems analysis, New York: Wiley &Sons, 1971.

    Google Scholar 

  44. Emel’yantsev, G.I. and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated INS/GNSS Orientation and Navigation Systems), St. Petersburg: Concern CSRI Elektropribor, 2016.

  45. Ishlinskii, A. Yu., Orientatsiya, giroskopy, inertsial’naya navigatsiya (Attitude Determination, Gyroscopes, and Inertial Navigation), Moscow: Nauka, 1976.

  46. Johann, F., Becker, D., Becker, M., and Ince, E.S., Multi-scenario evaluation of the direct method in strapdown airborne and shipborne gravimetry, in: International Association of Geodesy Symposia, 2020, Springer, Berlin, Heidelberg, https://doi.org/10.1007/1345_2020_127

  47. Jekeli, C. and Garcia, R., GPS phase accelerations for moving‑base vector gravimetry, Journal of Geodesy, 1997, vol. 71, pp. 630–639. https://doi.org/10.1007/s001900050130

    Article  Google Scholar 

  48. Ayres-Sampaio, D., Deurloo, R., Bos, M., Magalhaes, A., and Bastos, L., A comparison between three IMUs for strapdown airborne gravimetry, Surveys in Geophysics, 2015, vol. 36, no. 4, pp. 571–586. https://doi.org/10.1007/s10712-015-9323-5

    Article  Google Scholar 

  49. Bruton, A.M. and Schwarz, K.P., Airborne gravity estimation using adaptive filters, In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS97), Banff, Canada, June 3−6, 1997, pp. 605-612.

  50. Jekeli, C., Inertial Navigation Systems with Geodetic Applications, Berlin: De Gruyter, 2001. https://doi.org/10.1515/9783110800234

  51. Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing), Part 1, Vvedenie v teoriyu otsenivaniya (Introduction to the Estimation Theory), St. Petersburg: Concern CSRI Elektropribor, 2009, ISBN 978-5-900780-86-3.

  52. Stepanov, O.A., Optimal and suboptimal filtering in integrated navigation systems, in Aerospace Navigation Systems, Nebylov, A. and Watson, J., Eds., John Wiley & Sons Ltd., 2016, pp. 244–298.

    Google Scholar 

  53. Stepanov, O.A., Koshaev, D.A., and Motorin, A.V., Identification of gravity anomaly model parameters in airborne gravimetry problems using nonlinear filtering methods, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 318–323.https://doi.org/10.1134/S2075108715040136

    Article  Google Scholar 

  54. Motorin, A.V., Koshaev, D.A., and Stepanov, O.A., Performance analysis of the use of satellite measurements in marine gravimetry, 26 th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2019, pp. 282–287.

  55. Jensen, T.E. and Forsberg, R., Helicopter test of a strapdown airborne gravimetry system, Sensors, 2018, no. 18, no. 9, 3121. https://doi.org/10.3390/s18093121

  56. Thompson, L.G.D., Airborne gravity meter test, Journal of Geophysical Research, 1959, vol. 64, no. 4, ISSN: 01480227. https://doi.org/10.1029/JZ064i004p00488

  57. Thompson, L.G.D. and LaCoste, L.J.B., Aerial gravity measurements, Journal of Geophysical Research, 1960, vol. 65, no. 1, pp. 305–322. ISSN: 01480227. https://doi.org/10.1029/JZ065i001p00305

  58. Brozena, J.M., Mader, G.L., and Peters, M.F., Interferometric Global Positioning System: Three-dimensional positioning source for airborne gravimetry, Journal of Geophysical Research, 1989, vol. 94, no. B9, pp. 153−162. https://doi.org/10.1029/JB094iB09p12153

    Article  Google Scholar 

  59. Schwarz, K.R, Cannon, M.E., and Wong, R.V.C., A comparison of GPS kinematic models for the determination of position and velocity along a trajectory, Manuscripta Geodetica, 1989, vol. 14, pp. 345–353.

    Google Scholar 

  60. Kleusberg, A., Peyton, D., and Wells, D., Airborne gravimetry and the Global Positioning System, IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences, IEEE, 1990, pp. 273–278. https://doi.org/10.1109/PLANS.1990.66188

  61. Forsberg, R., Vassiliou, A., Schwarz, K., and Wong, R., Inertial gravimetry - Comparison of Kalman filtering-smoothing and post-mission adjustment techniques, Bulletin geodesique, 1986, vol. 60, no. 2, pp. 129–142. https://doi.org/10.1007/BF02521013

    Article  Google Scholar 

  62. Dmitriev, S.P., Inertsial’nye metody v inzhenernoi geodezii (Inertial Methods in Engineering Geodesy), St. Petersburg: CSRI Elektropribor, 1997, ISBN 5-900780-07-4.

  63. Lobusov, E.S. and Fomichev, A.V., A study of ZUPT mode for strapdown inertial navigation system of a ground vehicle, Vestnik MGTU im. Baumana, Series Priborostroenie, 2014, no. 6, pp. 15–24.

  64. Glennie, C. and Schwarz, K.P., Airborne gravity by strapdown INS/DGPS in a 100 km by 100 km area of the rocky mountains, Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS97), Banff, Canada, June 3-6, 1997, pp. 619–624.

  65. Lin, C.A., Chiang, K., Dongkai, Dai W., and Kuo, C.Y., Integration of INS and GNSS for gravimetric application with UAS, ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany.

  66. Honeywell https://www.honeywell.com/us/en.

  67. Northrop Grumman https://www.northropgrumman.com.

  68. SAFRAN https://www.safran-group.com.

  69. iXSea https://www.ixsea.com.

  70. iMAR https://www.imar-navigation.de.

  71. Gravtechology, JSK STC https://www.ooo-npt-gravtekhnologia.

  72. Bruton, A., Improving the accuracy and resolution of SINS/DPGS airborne gravimetry, PhD thesis, The University of Calgary, 2000.

  73. Glennie, C.L., Schwarz, K.P., Bruton A.M., Forsberg, R., Olesen, A.V., and Keller, K., A comparison of stable platform and strapdown airborne gravity, Journal of Geodesy, 2000, vol. 74, no. 5, pp. 383–389. https://doi.org/10.1007/s001900000082

    Article  Google Scholar 

  74. Glennie, C.L., An analysis of airborne gravity by strapdown INS/DGPS, PhD thesis, Department of Geomatics Engineering, The University of Calgary, 1999, UCGE Report No. 20125.

  75. Bruton, A., Hammada, Y., Ferguson, S., Schwarz, K., Wei, M., and Halpenny, J., A comparison of inertial platform, damped 2-axis platform and strapdown airborne gravimeter, Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, 2001, pp. 542–550.

  76. Tomé, P., Integration of inertial and satellite navigation systems for aircraft attitude determination, PhD thesis, Faculty of Sciences of the University of Porto, 2002.

  77. Bastos, L., Tome´, P., Cunha, T., Fernandes, M.J., and Cunha, S., Gravity anomalies from airborne measurements: Experiments using a low cost IMU device, in Gravity, Geoid and Geodynamics, Sideris, M., Ed., 2000, International Association of Geodesy Symposia, vol. 123, Springer, Berlin, 2002, pp. 253–258. https://doi.org/10.1007/978-3-662-04827-6_42

  78. Kreye, Ch., Hein, G.W, and Zimmermann, B., Evaluation of airborne vector gravimetry using GNSS and SDINS observations, in Observation of the Earth System from Space, Flury, J., Rummel, R., Reigber, C., Rothacher, M., Boedecker, G., and Schreiber, U., Eds., Berlin/Heidelberg: Springer, 2006, pp. 447–461. https://doi.org/10.1007/3-540-29522-4_29

  79. Boedecker, G. and Stiirze, A., SAGS4 − Strapdown airborne gravimetry system analysis, in Observation of the Earth System from Space, Flury, J., Rummel, R., Reigber, C., Rothacher, M., Boedecker, G., and Schreiber, U., Eds., Berlin/Heidelberg: Springer, 2006, pp. 463–478. https://doi.org/10.1007/3-540-29522-4_30

  80. Cai, S., Wu, M., Zhang, K., Cao, J., Tuo, Z., and Huang, Y., The first airborne scalar gravimetry system based on SINS/DGPS in China, Science China Earth Sciences, December 2013, vol. 56, no. 12, pp. 2198–2208. https://doi.org/10.1007/s11430-013-4726-y

    Article  Google Scholar 

  81. Huang, Y., Olesen, A.V., Wu, M., and Zhang, K., SGA-WZ: A new strapdown airborne gravimeter, Sensors, 2012, vol. 12, no. 7, pp. 9336–9348, https://doi.org/10.3390/s120709336

    Article  Google Scholar 

  82. Zhao, L., Forsberg, R., Wu, M., Olesen, A.V., Zhang, K., and Cao, J., A flight test of the strapdown airborne gravimeter SGA-WZ in Greenland, Sensors, 2015, vol. 6, pp. 13258–13269. https://doi.org/10.3390/s150613258

    Article  Google Scholar 

  83. Cai, S., Zhang, K., Wu, M., and Huang, Y., Long-term stability of the SGA-WZ strapdown airborne gravimeter, Sensors, 2012, vol. 12, no. 8, pp. 11091–11099. https://doi.org/10.3390/s120811091

    Article  Google Scholar 

  84. Cao, J., Wang, M., Cai, S., Zhang, K., Cong, D., and Wu, M., Optimized design of the SGA-WZ strapdown airborne gravimeter temperature control system, Sensors, 2015, vol. 15, no. 12, pp. 29984-29996. https://doi.org/10.3390/s151229781

    Article  Google Scholar 

  85. Berzhitskii, V.N., Ermakov, M.A., Ilyin, V.N., Smoller, Yu.L., Yurist, S.Sh., Bolotin, Yu.V., Golovan, A.A., Parusnikov, N.A., Gavrov, E.V., Rekunov, D.A., Fedorov, A.E., Gabell, B., Tuckett, H., Olson, D., and Shabanov, A.V., Airborne strapdown gravimeter GT-X, IAG Symposium on Terrestrial Gravimetry “Static and Mobile Measurements”, St. Petersburg: Elektropribor, 2010.

  86. Hoss, M., Dreyer, A, von Hinueber, E.L., Urli, R., and Lapeyrade, F., Innovative inertial measurement data acquisition and processing for aircraft surveying up to airborne gravimetry, The European Test and Telemetry Conference – ETTC 2020. https://doi.org/10.5162/ettc2020/1.3

  87. Becker, D., Becker, M., Olesen, A.V., Nielsen, J.E., and Forsberg, R., Latest results in strapdown airborne gravimetry using an iMAR RQH unit, 4th IAG Symposium on Terrestrial Gravimetry, St. Petersburg: Elektropribor, 2016, pp. 19−25.

  88. Ramensky Instrument Engineering Plant https://rpz.kret.tech

  89. Simav, M., Becker, D., Yildiz, H., and Hoss, M., Impact of temperature stabilization on the strapdown airborne gravimetry: A case study in Central Turkey, Journal of Geodesy, 2020, vol. 94, no. 4, 41. https://doi.org/10.1007/s00190-020-01369-5

    Article  Google Scholar 

  90. Glennie, C.L. and Schwarz, K.P., A comparison and analysis of airborne gravimetry results from two strapdown inertial/DGPS systems, Journal of Geodesy, 1999, vol. 73, no. 6, pp. 311–321. https://doi.org/10.1007/s001900050248

    Article  Google Scholar 

  91. Hwang, C., Hsiao, Y.S., and Shih, H.C., Data reduction in scalar airborne gravimetry: Theory, software and case study in Taiwan, Computers & Geosciences, 2006, vol. 32, no. 10, pp. 1573-1584. https://doi.org/10.1016/j.cageo.2006.02.015

    Article  Google Scholar 

  92. Deurloo, R., Development of a Kalman filter integrating system and measurement models for a low-cost strapdown airborne gravimetry system, PhD thesis, Faculty of Sciences of the University of Porto, 2011.

  93. Jensen, T.E., Olesen, A.V., Forsberg, R., Olsson, P.-A., and Josefsson, Ö., New results from strapdown airborne gravimetry using temperature stabilization, Remote Sensing, 2019, vol. 11, no. 22, 2682. https://doi.org/10.3390/rs11222682

    Article  Google Scholar 

  94. iCORUS https://imar-navigation.de/downloads/ iCORUS.pdf.

  95. Deurloo, R., Bastos, L., and Bos, M. On the use of UAVs for strapdown airborne gravimetry, in Geodesy for Planet Earth, Kenyon, S., Pacino, M.C., and Marti, U., Eds., 2012, International Association of Geodesy Symposia, vol. 136. Springer, Berlin, pp. 255–261. https://doi.org/10.1007/978-3-642-20338-1_31

  96. Bolotin, Yu.V. and Vyazmin, V.S., Spectral analysis of the airborne vector gravimetry problem, Journal of Mathematical Sciences, 2021, vol. 253, no. 6, pp. 778−795. https://doi.org/10.1007/s10958-021-05269-7

    Article  MATH  Google Scholar 

  97. Vyazmin, V.S., Golovan, A.A., Bolotin, Yu.V., Brovkin, G.I., and Kontarovich, O.R., Technologies and results of strapdown airborne gravimeter data processing in areal surveys with different aircraft, 33-ya konferentsiya pamyati N.N. Ostryakova (33rd Conference in Memory of N.N. Ostryakov), St. Petersburg: Elektropribor, 2022, pp. 157–160.

  98. Jensen, T.E., Nielsen, J.E., Olesen, A.V., and Forsberg, R., Strapdown airborne gravimetry using a combination of commercial software and stable-platform gravity estimates, Springer International Publishing AG 2017, Vergos, G.S. et al., Eds., International Symposium on Gravity, Geoid and Height Systems 2016, International Association of Geodesy Symposia 148. https://doi.org/10.1007/1345_2017_9

  99. Brovkin, G.I., Kontarovich, O.R., Golovan, A.A., and Vyazmin, V.S., Results of the first in Russia airborne gravity survey with a strapdown gravimeter, Proceedings of the 4 th International Geological Geophysical Conference and Exhibition GeoEurasia-2021, vol. 2, Tver: Polipress, 2021.

  100. Babayants, P.S., Brovkin, G.I., Kontarovich, O.R., Vyazmin, V.S., and Golovan, A.A., Features of modern airborne gravity surveys, 33-ya konferentsiya pamyati N.N. Ostryakova (33rd Conference in Memory of N.N. Ostryakov), St. Petersburg: Elektropribor, 2022.

  101. Control and Navigation Laboratory at Moscow State University http://NavLab.ru

  102. Senobari, M.S., New results in airborne vector gravimetry using strapdown INS/DGPS, Journal of Geodesy, 2010, vol. 84, pp. 277−291. https://doi.org/10.1007/s00190-010-0366-6

    Article  Google Scholar 

  103. Vyazmin, V.S., Golovan, A.A., and Bolotin, Yu.V., New strapdown airborne gravimetry algorithms: Testing with real flight data, 28 th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2021, ISBN 978-5-91995-081-3.

  104. Aerogeofizika Research and Production Company https://www.aerogeo.ru

Download references

ACKNOWLEDGMENTS

We thank A.A. Golovan and Yu.A. Litmanovich for their valuable comments during the revision of the paper, which allowed us to significantly improve it.

Funding

This work was supported by the Russian Scientific Foundation, project no. 18-19-00627, https://rscf.ru/project/18-19-00627.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Stepanov or A. A. Krasnov.

Ethics declarations

The authors declare that they have no conflicts of in-terest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peshekhonov, V.G., Stepanov, O.A., Rozentsvein, V.G. et al. State-of-the-Art Strapdown Airborne Gravimeters: Analysis of the Development. Gyroscopy Navig. 13, 189–209 (2022). https://doi.org/10.1134/S2075108722040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108722040101

Keywords:

Navigation