Log in

Synthesis and Properties of Nanosized Germanium Particles Obtained in Acetone under the Influence of Laser Radiation

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Stable nanosized germanium particles were synthesized in a liquid medium (acetone) by laser irradiation of single-crystal germanium plates under aerobic and anaerobic conditions at room temperature. Various experimental methods—optical spectrophotometry, atomic force microscopy, and dynamic light scattering—made it possible to detect stable nanosized Ge particles in acetone and record optical absorption and luminescence spectra depending on the time of laser irradiation in the presence and absence of oxygen. Particular attention is paid to the results of the effect of laser irradiation on the physicochemical properties of pure acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

REFERENCES

  1. Lukevich, E.Ya., Gar, T.K., Ignatovich, L.M., and Mironov, V.F., Biologicheskaya aktivnost' soedinenii germaniya (Biological Activity of Germanium Compounds), Riga: Zinatne, 1990.

  2. Bashkirova, S.A., Doskoch, Ya.E., Bessonov, A.E., Berezovskaya, I.V., and Kalmykova, A.E., Spravochnik Vracha Obchshei Praktiki, 2009, no. 9, p. 61.

  3. Asai, K., Organic Germanium. Miracle Cure, Tokyo: Japan Publ., 1980.

    Google Scholar 

  4. Isaev, A.D. and Bashkirova, S.A., RF Patent RU2293086, 2005.

  5. Revina, A.A., Bashkirova, S.A., Doskoch, Ya.E., and Zaitsev, P.M., Trudy konferentsii po probleme “Okislenie, okislitel’nyi stress, antioksidanty” (Proc. Conference on the Problem “Oxidation, Oxidative Stress, Antioxidants”), Moscow: Semenov Institute of Chemical Physics Russ. Acad. Sci., 2008, p. 269.

  6. Korolev, Yu.M. and Bashkirova, S.A., Dokl. Phys. Chem., 2010, vol. 435, no. 2, p. 205. https://doi.org/10.1134/S0012501610120043

    Article  CAS  Google Scholar 

  7. Revina, A.A., Bashkirova, S.A., and Zaitsev, P.M., Materialy 5-oi Rossiiskoi nauchno-prakticheskoi konferentsii “Aktual’nye problemy nanobiotekhnologii” (Proc. 5th Russian Scientific and Practical Conference “Topical Problems on Nanobiotechnology”), Moscow: Russian Academy of Natural Sciences, 2009, pp. 115, 116.

  8. Ming-Hsing Lin, Nsu-Sheng, Pei-Ming Yang, Meng-Yen Tsai, Tson-Pyng Perng, and Lin-Yuan Lin, Int. J. Radiat. Biol., 2009, vol. 85, no. 3, p. 214.

    Article  CAS  Google Scholar 

  9. Nicolis, G. and Prigogine, I., Self-Organization in Nonequilibrium Systems, New York: John Wiley and Sons, 1977.

    Google Scholar 

  10. Strukturnaya samoorganizatsiya v rastvorakh i na granitse faz (Structural Self-Organization in Solutions and at the Phase Boundary), Tsivadze, A.Yu., Ed., Moscow: LKI, 2008.

    Google Scholar 

  11. Rodnikova, M.I. and Buljonkov, V.A., in Structural Self-Organization in Solutions and at the Phase Boundary, Tsivadze, A.Yu., Ed., Moscow: LKI, 2008, p. 544.

    Google Scholar 

  12. Grzelczak, M., Vermant, J., Furst, E.M., et al., ACS Nano, 2010. https://www.acsnano.org. Grzelczak, M., Vermant, J., Furst, E.M., et al., ACS Nano, 2010, vol. 4, no. 7, p. 3591. https://doi.org/10.1021/nn100869j

  13. Wilcoxon, J.P., Provencio, P.P., and Samara, G.E., Phys. Rev. B, 2001, vol. 64, no. 3, p. 035417.

    Article  Google Scholar 

  14. **ng Chen, Qua Cai, **g Zhang, Zhongiun Chen, Wei Wang, Ziyu Wu, and Zhonghua Wu, Mater. Lett., 2007, vol. 61, p. 535.

    Article  CAS  Google Scholar 

  15. Kuznetsov, M.A., Revina, A.A., Pavlov, Yu.S., and Chekmarev, A.M., Tezisy dokladov 10-oi konferentsii Molodykh uchenykh IFKhE RAN “FIZIKOKhIMIYa- 2015” (Proc. 10th Conference of Young Scientists of Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences “Physical Chemistry - 2015”), Moscow, 2015, p. 105.

  16. Prabakar, S., Shiohara, A., Yanada, S., Fujioka, K., Yamamoto, K., and Tilley, R.D., Chem. Mater., 2010, vol. 22, no. 2, p. 482.

    Article  CAS  Google Scholar 

  17. Revina, A.A., Souvorova, O.V., Smirnov, Yu.V., and Pavlov, Yu.S., Prot. Met. Phys. Chem. Surf., 2022, vol. 58, no. 3, p. 525. https://doi.org/10.1134/S2070205122030170

    Article  CAS  Google Scholar 

  18. Carolan, D. and Doyle, H., J. Nanomater., 2015, vol. 2015, p. 506056. https://doi.org/10.1155/2015/506056

    Article  CAS  Google Scholar 

  19. Shirahata Naoto, Hirakava Daigo, Masuda Yoshitake, and Sakka Yoshio, Langmuir, 2013, vol. 29, no. 24, p. 7401.

    Article  Google Scholar 

  20. Jun Liu, Changhao Liang, Zhenfei Tian, Shuyuan Zhang, and Guosheng Shao, Sci. Rep., 2013, vol. 3, p. 1741. https://doi.org/10.1038/step01741

    Article  Google Scholar 

  21. Vadavalli, S., Valligatla, S., Neelamraju, B., Dar Mudasir, H., Chisera, A., Ferrari, M., and Desai Narayana, R., Front. Phys., Sect. Opt. Photonics, 2014, vol. 2, p. 57. https://doi.org/10.3389/fphy.2014.00057

    Article  Google Scholar 

  22. Pescara B. and Mazzio, K.A., Langmuir, 2020, vol. 36, no. 40, p. 11685. https://doi.org/10.1021/acs.langmuir.0c01891

    Article  CAS  Google Scholar 

  23. Renkes, G.D. and Wettack, F.S., J. Am. Chem. Soc., 1969, vol. 91, no. 26, p. 7514. https://doi.org/10.1021/ja01054a051

    Article  CAS  Google Scholar 

  24. Shubin, V.N. and Kabakchi, S.A., in Teoriya i metody radiatsionnoi khimii vody (Theory and Methods for Radiation Chemistry of Water), Moscow: Nauka, 1969, p. 216.

  25. Ermakova, G.L., Larin, V.A., Revina, A.A., and Bakh, N.A., Khim. Vys. Energ., 1969, vol. 3, no. 1, p. 94.

    CAS  Google Scholar 

  26. Bach, N.A., Revina, A.A., and Vannikov, A.V., Proc. 4th Congress of Radiation Research, Evian, 1970, p. 449.

  27. Revina, A., Proc. 10th Conference on Radioisotopes, Tokyo, 1971.

  28. Bach, N.A., Borisenko, G.L., Kostin, A.K., and Revina, A.A., Int. J. Radiat. Phys. Chem., 1972, vol. 4, no. 2, p. 121.

    Article  Google Scholar 

  29. Borisenko, G.L. and Bach, N.A., Tezisy dokladov Simpoziuma po radatsionnoi khimii vodnykh system, Moskva, 1973 g. (Proc. Symposium on Radiation Chemistry of Water Systems, Moscow, 1973), Moscow: Nauka, 1973, p. 47.

  30. Borisenko, G.L. and Bach, N.A., Khim. Vys. Energ., 1975, vol. 9, no. 3, p. 198.

    CAS  Google Scholar 

  31. NIST Chemistry. http://webbook.nist.gov/chemistry.

  32. Schutze, M. and Herrmann, H., Phys. Chem. Chem. Phys., 2004, vol. 6, p. 965.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Revina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revina, A.A., Savelyev, V.V., Krivenko, T.V. et al. Synthesis and Properties of Nanosized Germanium Particles Obtained in Acetone under the Influence of Laser Radiation. Prot Met Phys Chem Surf 59, 1145–1158 (2023). https://doi.org/10.1134/S2070205123701319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123701319

Navigation