Log in

Synthesis, Experimental Characterization, DFT and Theoretical Anticorrosion Study for 1-(4-(3-Methyl-3-phenylcyclobutyl)thiazol-2-yl)-3-(p-tolyl)thiourea

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this work, 1-(4-(3-methyl-3-phenylcyclobutyl)thiazol-2-yl)-3-(p-tolyl)thiourea was synthesized by alcohol-mediated condensation of 4-(3-methyl-3-phenylcyclobutyl)thiazol-2-amine and isothiocyanatobenzene. The molecule results were experimentally characterized using FT-IR, 1H NMR, and 13C NMR spectroscopy. Density functional theory (B3LYP/6-311G) was used to investigate the ideal molecule structure, vibrational frequencies, and 1H with 13C NMR (theoretically) chemical shifts. Theoretical and experimental spectroscopy results were compared and agreed with each other, which indicated the validity of the used developed molecular structure. The Dipole moment, hardness, softness, electronegativity, electrophilicity index, nucleophilicity index, and chemical potential as electronic structural parameters linked to corrosion inhibition efficacy were investigated for the prepared compound. Furthermore, the fraction of transferred electrons was calculated to determine the interaction between the iron surface and organic molecules. The results indicated a favorable relationship between organic-based corrosion inhibitors and quantum chemical parameters processes. The corrosion inhibitors’ behavior can be predicted without the need for experimental investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. El Ibrahimi, B. and Guo, L., in Azoles-Synthesis, Properties, Applications and Perspectives, London: IntechOpen, 2020.

    Google Scholar 

  2. Kenari, M.E., Putman, J.I., Singh, R.P., Fulton, B.B., Phan, H., Haimour, R.K., Tse, K., Berthod, A., Lovely, C.J., and Armstrong, D.W., Molecules, 2021, vol. 26, p. 213.

    Article  CAS  Google Scholar 

  3. Abu-Dief, A.M., El-Metwaly, N.M., Alzahrani, S.O., Alkhatib, F., Abualnaja, M.M., El-Dabea, T., and Ali, M.A.E.A.A., J. Mol. Liq., 2021, vol. 326, p. 115277.

    Article  CAS  Google Scholar 

  4. Guo, H., Yang, C.-Y., Zhang, X., Motta, A., Feng, K., **a, Y., Shi, Y., Wu, Z., Yang, K., and Chen, J., Nature, 2021, vol. 599, p. 67.

    Article  CAS  Google Scholar 

  5. Siddiqui, N., Arya, S.K., Ahsan, W., and Azad, B., Int. J. Drug Dev. Res., 2011, vol. 3, p. 55.

    CAS  Google Scholar 

  6. Omar, R., Koparir, P., and Koparir, M., Indian Drugs, 2021, vol. 1, p. 58.

    Google Scholar 

  7. Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A.R., and Hatamjafari, F., J. Chem. Res., 2021, vol. 45, p. 147.

    Article  CAS  Google Scholar 

  8. Ali, S.H. and Sayed, A.R., Synth. Commun., 2021, vol. 51, p. 670.

    Article  CAS  Google Scholar 

  9. **e, X.-X., Li, H., Wang, J., Mao, S., **n, M.-H., Lu, S.-M., Mei, Q.-B., and Zhang, S.-Q., Bioorg. Med. Chem., 2015, vol. 23, p. 6477.

    Article  CAS  Google Scholar 

  10. Prakash, A. and Adhikari, D., Int. J. ChemTech Res., 2011, vol. 3, p. 1891.

    Google Scholar 

  11. Zopubi, W., Int. J. Org. Chem., 2013, vol. 3, p. 73.

    Article  Google Scholar 

  12. Kunkely, H. and Vogler, A., J. Photochem. Photobiol., A, 2001, vol. 138, p. 51.

    Article  CAS  Google Scholar 

  13. Rahaman, S.H., Chowdhury, H., Bose, D., Ghosh, R., Hung, C.-H., and Ghosh, B.K., Polyhedron, 2005, vol. 24, p. 1755.

    Article  CAS  Google Scholar 

  14. Gümrükçüoğlu, N., Ocak, M., Bahadır, Z., and Ocak, Ü.O., Pak. J. Anal. Environ. Chem., 2013, vol. 14, p. 7.

    Google Scholar 

  15. Li, J., Gao, K., Bian, M., and Ding, H., Org. Chem. Front., 2020, vol. 7, p. 136.

    Article  CAS  Google Scholar 

  16. Dembitsky, V.M., Phytomedicine, 2014, vol. 21, p. 1559.

    Article  CAS  Google Scholar 

  17. Seiser, T., Saget, T., Tran, D.N., and Cramer, N., Angew. Chem., Int. Ed., 2011, vol. 50, p. 7740.

    Article  CAS  Google Scholar 

  18. Koparir, P., Rebaz, O., Karatepe, M., and Ahmed, L., El-Cezeri, 2020, vol. 8, p. 1495.

    Google Scholar 

  19. Rebaz, O., Koparir P., Qader I., and Ahmed, L., Gazi Univ. J. Sci., 2022, vol. 35, p. 434.

    Google Scholar 

  20. Ahmed, L. and Rebaz, O., J. Phys. Chem. Funct. Mater., 2021, vol. 4, p. 1.

    Google Scholar 

  21. Patel, A., Panchal, V., Mudaliar, G., and Shah, N., J. Saudi Chem. Soc., 2013, vol. 17, p. 53.

    Article  CAS  Google Scholar 

  22. Rebaz, O., Koparir, P., Qader, I.N., and Ahmed, L., Cumhuriyet Sci. J., 2021, vol. 42, p. 576.

    Article  Google Scholar 

  23. Sure, R. and Grimme, S., J. Comput. Chem., 2013, vol. 34, p. 1672.

    Article  CAS  Google Scholar 

  24. Türker, L., Atalar, T., Gümüş, S., and Camur, Y., J. Hazard. Mater., 2009, vol. 167, p. 440.

    Article  Google Scholar 

  25. Omer, R.A., Koparir, P., Ahmed, L., and Koparir, M., Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 2021, vol. 60, p. 732.

    Google Scholar 

  26. Omer, R.A., Ahmed, L.O., Koparir, M., and Koparir, P., Indian J. Chem., Sect. A: Inorg., Bio-Inorg., Phys., Theor. Anal. Chem., 2020, vol. 59, p. 1828.

    Google Scholar 

  27. Li, X., Deng, S., and Fu, H., Corros. Sci., 2011, vol. 53, p. 3241.

    Article  CAS  Google Scholar 

  28. Koparir, P., Sarac, K., and Omar, R.A., Biointerface Res. Appl. Chem., 2022, vol. 12, p. 809.

    CAS  Google Scholar 

  29. Karelson, M., Lobanov, V.S., and Katritzky, A.R., Chem. Rev., 1996, vol. 96, p. 1027.

    Article  CAS  Google Scholar 

  30. Fang, J. and Li, J., J. Mol. Struct.: THEOCHEM, 2002, vol. 593, p. 179.

    Article  CAS  Google Scholar 

  31. Rebaz, O., Koparir, P., Ahmed, L., and Koparir, M., Turk. Comput. Theor. Chem., 2020, vol. 4, p. 67.

    Article  Google Scholar 

  32. Bartolotti, L.J. and Flurchick, K., Rev. Comput. Chem., 1996, vol. 7, p. 187.

    Article  CAS  Google Scholar 

  33. Ahmed, L. and Rebaz, O., Cumhuriyet Sci. J., 2020, vol. 41, p. 916.

    Article  Google Scholar 

  34. Omer, R.A., Koparir, P., and Ahmed, L.O., J. Bio- Tribo-Corros., 2022, vol. 8, p. 1.

  35. AlFalah, M.G.K. and Kandemirli, F., Arabian J. Sci. Eng., 2021, vol. 46, p. 1.

    Google Scholar 

  36. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09, Wallingford, CT: Gaussian Inc., 2009, vol. 121, p. 150.

    Google Scholar 

  37. Dennington, R., Keith, T., and Millam, J., GaussView, Ver. 5, Shawnee Mission, KS: Semichem Inc., 2009.

    Google Scholar 

  38. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 1372.

    Article  CAS  Google Scholar 

  39. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.

    Article  CAS  Google Scholar 

  40. Becke, A.D., J. Chem. Phys., 2003, vol. 119, p. 2972.

    Article  CAS  Google Scholar 

  41. Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys., 1971, vol. 54, p. 724.

    Article  CAS  Google Scholar 

  42. Cances, E., Mennucci, B., and Tomasi, J., J. Chem. Phys.,1997, vol. 107, p. 3032.

    Article  CAS  Google Scholar 

  43. Kumar, S.S., Athimoolam, S., and Sridhar, B., Spectrochim. Acta, Part A, 2015, vol. 146, p. 204.

    Article  Google Scholar 

  44. Pereira, D.H., La Porta, F., Santiago, R., Garcia, D., and Ramalho, T., Rev. Virtual Quim., 2016, vol. 8, p. 425.

    Article  CAS  Google Scholar 

  45. Ahmed, L. and Rebaz, O., J. Phys. Chem. Funct. Mater., 2021, vol. 4, p. 10.

    Google Scholar 

  46. Fukui, K., Science, 1982, vol. 218, p. 747.

    Article  CAS  Google Scholar 

  47. Obot, I., Macdonald, D., and Gasem, Z., Corros. Sci., 2015, vol. 99, p. 1.

    Article  CAS  Google Scholar 

  48. Koopmans, T., Physica, 1934, vol. 1, p. 104.

    Article  Google Scholar 

  49. Parr, R.G., Donnelly, R.A., Levy, M., and Palke, W.E., J. Chem. Phys., 1978, vol. 68, p. 3801.

    Article  CAS  Google Scholar 

  50. Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512.

    Article  CAS  Google Scholar 

  51. Chermette, H., J. Comput. Chem., 1999, vol. 20, p. 129.

    Article  CAS  Google Scholar 

  52. Madkour, L.H., Kaya, S., Guo, L., and Kaya, C., J. Mol. Struct., 2018, vol. 1163, p. 397.

    Article  CAS  Google Scholar 

  53. Janak, J.F., Phys. Rev. B, 1978, vol. 18, p. 7165.

    Article  CAS  Google Scholar 

  54. Von Szentpály, L., J. Mol. Struct.: THEOCHEM, 1991, vol. 233, p. 71.

    Article  Google Scholar 

  55. Yang, W. and Parr, R.G., Proc. Natl. Acad. Sci. U. S. A., 1985, vol. 82, p. 6723.

    Article  CAS  Google Scholar 

  56. Raissi, H., Ayachi, H., Mahdhaoui, F., Ayachi, S., and Boubaker, T., J. Mol. Struct., 2021, vol. 1224, p. 128843.

    Article  CAS  Google Scholar 

  57. Toro-Labbé, A., Theoretical Aspects of Chemical Reactivity, Elsevier, 2006.

    Google Scholar 

  58. Marinho, M.M., Almeida-Neto, F.W.Q., Marinho, E.M., da Silva, L.P., Menezes, R.R., Dos Santos, R.P., Marinho, E.S., de Lima-Neto, P., and Martins, A.M., Heliyon, 2021, vol. 7, p. e06079.

    Article  CAS  Google Scholar 

  59. Dennington II, R., Keith, T., Millam, J., Eppinnett, K., Hovell, W.L., and Gilliland, R., GaussView, Ver. 3.09, Shawnee Mission, KS: Semichem Inc., 2003.

  60. Omer, L.A. and Anwer, R.O., J. Phys. Chem. Funct. Mater., 2020, vol. 3, p. 48.

    Google Scholar 

  61. Foresman, J. and Frish, E., Exploring Chemistry with Electronic Structure Method, Pittsburgh, PA: Gaussian, 1996.

    Google Scholar 

  62. Coates, J., Interpretation of Infrared Spectra, a Practical Approach, Chichester: John Wiley and Sons, 2000.

    Book  Google Scholar 

  63. Furić, K., Mohaček, V., Bonifačić, M., and Štefanić, I., J. Mol. Struct., 1992, vol. 267, p. 39.

    Article  Google Scholar 

  64. Sajan, D., Binoy, J., Pradeep, B., Krishna, K.V., Kartha, V., Joe, I.H., and Jayakumar, V., Spectrochim. Acta, Part A, 2004, vol. 60, p. 173.

    Article  CAS  Google Scholar 

  65. Koparir, M., Orek, C., Koparir, P., and Sarac, K., Spectrochim. Acta, Part A, 2013, vol. 105, p. 522.

    Article  CAS  Google Scholar 

  66. Panicker, C.Y., Varghese, H.T., Manjula, P., Saro**i, B., Narayana, B., War, J.A., Srivastava, S., Van Alsenoy, C., and Al-Saadi, A.A., Spectrochim. Acta, Part A, 2015, vol. 151, p. 198.

    Article  CAS  Google Scholar 

  67. Ahmed, L. and Rebaz, O., J. Phys. Chem. Funct. Mater., 2019, vol. 2, p. 66.

    Google Scholar 

  68. Daoud, D., Douadi, T., Hamani, H., and Chafaa, S., J. Mol. Struct., 2017, vol. 1137, p. 50.

    Article  CAS  Google Scholar 

  69. Rebaz, O., Koparir, P., Qader, I., and Ahmed, L., Gazi Univ. J. Sci. 2022, vol. 35, p. 1.

    Google Scholar 

  70. Tarı, G.Ö., Gümüş, S., and Ağar, E., Spectrochim. Acta, Part A, 2015, vol. 141, p. 119.

    Article  Google Scholar 

  71. Mathammal, R., Sangeetha, K., Sangeetha, M., Mekala, R., and Gadheeja, S., J. Mol. Struct., 2016, vol. 1120, p. 1.

    Article  CAS  Google Scholar 

  72. Chen, S., He, B., Liu, Y., Wang, Y., and Zhu, J., Int. J. Electrochem. Sci., 2014, vol. 9, p. 5400.

    Article  Google Scholar 

  73. Beytur, M., Irak, Z.T., Manap, S., and Yüksek, H., Heliyon, 2019, vol. 5, p. e01809.

    Article  Google Scholar 

  74. Omer, L.A. and Anwer, R.O., J. Phys. Chem. Funct. Mater., 2020, vol. 3, p. 48.

    Google Scholar 

  75. El Adnani, Z., Mcharfi, M., Sfaira, M., Benzakour, M., Benjelloun, A., and Touhami, M.E., Corros. Sci., 2013, vol. 68, p. 223.

    Article  CAS  Google Scholar 

  76. Alexander, D. and Moccari, A., Corrosion, 1993, vol. 49, p. 921.

    Article  CAS  Google Scholar 

  77. Martinez, S., Mater. Chem. Phys., 2003, vol. 77, p. 97.

    Article  CAS  Google Scholar 

  78. Issa, R.M., Awad, M.K., and Atlam, F.M., Appl. Surf. Sci., 2008, vol. 255, p. 2433.

    Article  CAS  Google Scholar 

  79. Musa, A.Y., Jalgham, R.T., and Mohamad, A.B., Corros. Sci., 2012, vol. 56, p. 176.

    Article  CAS  Google Scholar 

  80. Karakus, N. and Sayin, K., J. Taiwan Inst. Chem. Eng., 2015, vol. 48, p. 95.

    Article  CAS  Google Scholar 

  81. Erkan, S., Sayın, K., and Karakaş, D., Hacettepe J. Biol. Chem., 2014, vol. 42, p. 337.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebaz Anwar Omer.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omer, R.A., Koparir, P. & Koparir, M. Synthesis, Experimental Characterization, DFT and Theoretical Anticorrosion Study for 1-(4-(3-Methyl-3-phenylcyclobutyl)thiazol-2-yl)-3-(p-tolyl)thiourea. Prot Met Phys Chem Surf 59, 1315–1325 (2023). https://doi.org/10.1134/S2070205123701198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123701198

Keywords:

Navigation