Log in

Performance of Organic Frameworks as Thriving Mild Steel Corrosion Inhibitors in Acid Medium: Syntheses and Characterization

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The study described the synthesis and spectral characterization of four novel enolimine ligands; 1-(((2-hydroxy-5-methylphenyl)imino)methyl)naphthalene-2-ol(L1), N-((2-hydroxynaphthalen-1-yl)methylene)pyrazinen-2-carboxamide(L2), 1-((thiazol-2-ylimino)methyl)naphthalene-2-ol(L3) and 1-(((3-methylpyridin-2-yl)imino)methyl)naphthalene-2-ol(L4) by solubility; melting point and elemental (CHNS) evaluations; proton and carbon nuclear magnetic resonance, electronic (UV–Vis) and vibrational (IR), spectrophotometry. The ligands were investigated for corrosion inhibition potentials. The solubility data revealed that all the organic ligands were soluble in dimethylformamide ((CH3)2SO) but insoluble with water (OH2). The IR spectra of the ligands presented bands at 1631–1685 cm–1 indicative of imine functional group and corroborative of enol assemblage. The effect of the ligands on acid corrosion of mild steel (ms) confirmed substantial corrosion inhibition behaviour as against corrosion of ms in one mole of hydrochloric acid solution. The weight loss (WL) shows that the heterocyclic organic inhibitors had excellent corrosion inhibition performance at high temperature. The highest inhibition efficiency of 90% was observed at 3 h for both L3 and L4, and 89.20% for L3 at 5-h immersion in the acid solution at 308 K temperature, and 500 ppm concentration. Substantial chemical calculations were also accomplished at B3LYP level with 6-31G (d, p) basis set and molecular descriptors which include dipole moment (μ), energy gap, EHOMO, and ELUMO were used. Koopman’s theorem was used to derive and analyze the global reactivity descriptors; global softness (S), global hardness (η), electrophilicity index (ω). The organic ligands were found to be in good agreement with both experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Zuo, R., Ömek, B.C., Syrett, R.M., Green, C.H, Hsu, F.B., and Mansfeld, T.K.W., Appl. Microbiol. Biotechnol., 2004, vol. 64, no. 2, p. 275.

    Article  CAS  Google Scholar 

  2. Qusay, A.J., Dhafer, S.Z., Rawaa, D.S., Ahmed, A.A., Tayser, S.G., Mohd, S.T., and Abdul, A.H.K., Coatings, 2019.

  3. Ahmed, M.H.O., Al-miery, A., Al-Majedy, Y.K., Kadhum, A.A.H., Mohamad, A.B., and Gaaz, T.S., Sci. Rep.,2018, vol. 8, p. 728.

    Article  Google Scholar 

  4. Al-miery, A., Kassim, F.A.B., Kadhum, A.A.H., and Mohamad, A.B., Sci. Rep., 2016, vol. 6, p. 19890.

    Article  Google Scholar 

  5. Al-miery, A., Al-Majedy, Y., Kadhum, A., and Mohamad, A., Molecules, 2015, vol. 20, p. 366.

    Article  Google Scholar 

  6. Barak, D. and Mehmet, G., Proc. Int. Environmental Sciences Symposium of Van (IESSV14), Van, 2014.

  7. Festus, C., Chioma, D., Don-Lawson, and Ima-Bright, N., Int. J. Res. Innovation Appl. Sci., 2019, vol. 4, no. 5, p. 2454.

    Google Scholar 

  8. Li, X., Deng, S., and Fu, H., Corros. Sci., 2011, vol. 53, p. 302.

    Article  CAS  Google Scholar 

  9. Yaro, A.S., Khadum, A.A., and Wael, R.K., Alexandria Eng. J., 2013, vol. 52, p.129.

    Google Scholar 

  10. Habeeb, J.H., Hasan, M.L., Rifaat, M.D., Abdul, A.H.K., Ahmed, A.A., Tayser, S.G. (in press).

  11. Al-Baghdadi, S.B., Fanar, G.G., Ahmed, Q.S., Talib, K.A., Tayser, S.G., Ahmed, A.A., Abdul, A.H.K., Khalid, S.R., and Wahab, K.A., Results Phys., 2018, vol. 8, p. 1178.

    Article  Google Scholar 

  12. Festus, C. and Don-Lawson, C.D., Direct Res. J. Chem. Mater. Sci., 2017, vol. 5, no. 6, p. 1.

    Google Scholar 

  13. Festus, C. and Wodi, C.T., Direct Res. J. Chem. Mater. Sci., 2021, vol. 8, p. 3.

    Google Scholar 

  14. Madueke, N.A. and Iroha, N.B., Int. J. Innovative Res. Sci., Eng. Technol., 2018, vol. 7, no. 10, p. 10251.

    Google Scholar 

  15. Iroha, N.B.M., Akaranta, O., and James, A.O., Chem. Sin., 2012, vol. 3, no. 4, p. 995.

    CAS  Google Scholar 

  16. Frisch, M.J., Trucks, G.W., Schlegel, G.E.S.H.B., Robb, M.A., Cheeseman, J.R., and Scalmani, G., Gaussian 09, Revision A.02, Wallingford, CT: Gaussian Inc., 2009.

    Google Scholar 

  17. Haque, J., Verma, C., Srivastava, V., Quraishi, M., and Ebenso, E., Results Phys., 2018, vol. 9, p. 1481.

    Article  Google Scholar 

  18. Rodriguez-Valdez, L.M., Martinez-Villafane, A., and Glossman-Mitnik, D.J., J. Mol. Struct.: THEOCHEM, 2005, vol. 716, p. 61.

    Article  CAS  Google Scholar 

  19. Patel, N.S., Beranek, P., Nebyla, M., Pribyl, M., and Snita, D., Int. J. Electrochem. Sci., 2014, vol. 9, p. 3951.

    Article  Google Scholar 

  20. Festus, C., Ekpete, O.A., and Don-Lawson, C.D., Curr. Res. Chem., 2020, vol. 12, p. 1.

    Article  CAS  Google Scholar 

  21. El-saied, A.F., Wahbai, A.M., Al-Hakimia, N.A., Shakdofa, M.M., Egypt. J. Chem., 2017, vol. 60, no. 1, p. 1.

    Google Scholar 

  22. Safia, C., Keraghel, S., Benghanem, K., Ruiz-Rosas, R., Ourari, A., and Morallan, K., Int. J. Electrochem. Sci., 2018, vol. 13, p. 175.

    Article  Google Scholar 

  23. Nursen, S. and Perihan, G., Z. Naturforsch., B: J. Chem. Sci., 2004, vol. 59, no. 6, p. 692.

    Article  Google Scholar 

  24. Chandrasekaran, T., Suresh, M., Mashood, A.F.M., and Syed, A.R., Chem. Sin., 2014, vol. 5, no. 5, p. 81.

    Google Scholar 

  25. Ajlouni, A.M., Taha, Z.A., Al-Hassan, A.K., and Anzeh, A.M.A., J. Lumin., 2012, vol. 132, no. 6, p. 1357.

    Article  CAS  Google Scholar 

  26. Festus, C. and Don-Lawson, C.D., Pharm. Chem. J., 2018, vol. 5, no. 3, p. 118.

    Google Scholar 

  27. Gomathi, V. and Selvameena, R., Main Group Chem., 2013, vol. 12, p. 275.

    Article  CAS  Google Scholar 

  28. Osowole, A.A. and Festus, C.J., J. Chem., Biol. Phys. Sci., 2015, vol. 6, p. 11.

    Google Scholar 

  29. Festus, C., Asian J. Appl. Chem. Res., 2021, vol. 10, no.1, p. 40.

    Google Scholar 

  30. Abdel-latif, S.A., HAssibl, H.B., and Issa, Y.M., Mol. Biomol. Spectrosc., 2007, vol. 67, no. 3, p. 950.

    Article  CAS  Google Scholar 

  31. Sayed, S.S., Dawood, S., Ibrahim, K., Sajjad, A., Umar, A., and Atiqur, R., Biointerface Res. Appl. Chem., 2020, vol. 10, no. 6.

  32. Festus, C., Ibeji, C., and Okpareke, O., J. Mol. Struct., 2020, vol. 1210, p. 128017.

    Article  Google Scholar 

  33. Abel-Olaka, L.C., Kpee, F., and Festus, C., Niger. Res. J. Chem. Sci., 2019, vol. 7, no. 2, p. 133.

    Google Scholar 

  34. Palaniappan, N., Cole, I.S., and Kuznetsov, A., RSC Adv., 2020, vol. 10, p. 11426.

    Article  CAS  Google Scholar 

  35. Kpee, F., Ukachukwu, C.V., and Festus, C., Niger. Res. J. Chem. Sci., 2018, vol. 4, no. 2, p. 193.

    Google Scholar 

  36. Demebin, A.I., Oladips, M.A., and Seire, B., Egypt. J. Chem., 2019, vol. 62, p. 1766.

    Google Scholar 

  37. Jacob, K.S. and Parameswaran, G., Int. J. Chem. Tech Res., 2010, vol. 52, p. 224.

    Google Scholar 

  38. Festus, C. and Wodi, C.T., J. Appl. Sci., 2022, vol. 22, no. 4, p. 152.

    Article  Google Scholar 

  39. James, A.O. and Akaranta, O., Afr. J. Pure Appl. Chem., 2009, vol. 3, no. 11, p. 212.

    CAS  Google Scholar 

  40. Ouedraogo, A., Diki, N.Y.S., Bohoussou, K.V., Soro, D., and Trokourey, A., Chem. Sci. Rev. Lett., 2018, vol. 7, p. 427.

    Google Scholar 

  41. Silas, O., Ejiroghene, K.O., and Rogers, T., Int. J. Eng. Appl. Sci. Tech., 2020, vol. 5, no. 3, p. 33.

    Google Scholar 

  42. Madueke, N.A. and Iroha, N.B., Int. J. Innovative Res. Sci., Eng. Technol., 2018, vol. 7, no. 10, p. 10251.

    Google Scholar 

  43. Soroya, N., Rayenne, D., Boulanouar, M., and Rabah, Q., Port. Electrochim. Acta, 2018, vol. 36, no. 1, p. 23.

    Article  Google Scholar 

  44. Lukovits, I., Palfi, K., Bako, I., and Kalman, E., Corrosion, 1997, vol. 53, p. 915.

    Article  CAS  Google Scholar 

  45. Musa, A.Y., Kadhum, A.H., Mohamad, A.B., Rohoma, A.B., and Mesmari, H., J. Mol. Struct., 2010, vol. 969, p. 233.

    Article  CAS  Google Scholar 

  46. Ebenso, E.E., Arslan, T., Kandemirli, F., Caner, I.N., and Love, I., Int. J. Quantum Chem., 2010, vol. 110, p. 1003.

    Article  CAS  Google Scholar 

  47. Popova, A., Christov, M., and Deligeorgiev, T., Corrosion, 2003, vol. 59, p. 756.

    Article  CAS  Google Scholar 

  48. Özcan, M. and Dehri, I., Prog. Org. Coat., 2004, vol. 51, p. 181.

    Article  Google Scholar 

  49. Lebrini, M., Lagrenee, M., Vezin, H., Gengembre, L., and Bentiss, F., Corros. Sci., 2005, vol. 47, p. 485.

    Article  CAS  Google Scholar 

  50. Festus, C., Odozi, W.N., and Olakunle, M., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 3, p. 651.

    Article  Google Scholar 

  51. Mohamed, G., Maim, K., Kamal, S., Mohammed, A., and Abd El-Lateef, H.M., Polymer, 2022, vol. 14, p. 228.

    Article  Google Scholar 

  52. Obot, I.B., Obi-Egbedi, N.O., and Umoren, S.A., Int. J. Electrochem. Sci., 2009, vol. 4, p. 863.

    Article  CAS  Google Scholar 

  53. Abd El-Lateef, H.M., Shalabi, K., and Tantawy, A.H., New J. Chem., 2020, vol. 44, p.17791.

    Article  Google Scholar 

  54. Fleming, I., Frontier Orbitals and Organic Chemical Reactions, New York: John Wiley and Sons, 1976, p. 249.

    Google Scholar 

  55. Oyebamiji, A.K. and Adeleke, B.B., Int. J. Corros., 2018, vol. 7, p. 498.

    CAS  Google Scholar 

  56. Khalil, N., Electrochim. Acta, 2003, vol. 48, p. 2635.

    Article  CAS  Google Scholar 

  57. Diki, N.Y.S., Coulibaly, N.H., Kambiré, O., and Trokourey, A., J. Mater. Sci. Chem. Eng., 2021, vol. 9, p. 11.

    CAS  Google Scholar 

  58. Khaled, K.F., Babic-Samardziza, K., and Hackerman, N., Electrochim. Acta, 2005, vol. 50, p. 2515.

    Article  CAS  Google Scholar 

  59. Bereket, G., Hur, E., and Ogretir, C., J. Mol. Struct.: THEOCHEM, 2002, vol. 578, p. 79.

    Article  CAS  Google Scholar 

  60. Gece, G., Corros. Sci., 2008, vol. 50, p. 2981.

    Article  CAS  Google Scholar 

  61. Gece, G. and Bilgic, S., Corros. Sci., 2009, vol. 51, p. 1876.

    Article  CAS  Google Scholar 

  62. Spirtovic-Halilovic, S., Salilovic, M., Dzudzevic-Cancar, H., Trifunovic, S., Roca, S., Softic, D., and Zavrsnik, D., J. Serb. Chem. Soc., 2014, vol. 79, p. 436.

    Google Scholar 

  63. Udhayakala, P., Rajendiran, T.V., and Gunasekaran, S., J. Comput. Methods Mol. Des., 2012, vol. 2, p. 1.

    CAS  Google Scholar 

  64. Udhayakala, P. and Rajendiran, T.V., Pharm. Chem., 2015, vol. 7, p. 92.

    Google Scholar 

  65. Vibha, S., Ekta, K.A., and Savio, C., J. Chem. Pap., 2016, vol. 70, no. 11, p. 1493.

    Google Scholar 

  66. Odozi, W.N., Festus, C., and Muhammad, A.D., Niger. Res. J. Chem. Sci., 2020, vol. 8, no. 2, p. 291.

    Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Festus Chioma.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Festus Chioma, Chizoba, W.T. & Atamunotekeari, I.I. Performance of Organic Frameworks as Thriving Mild Steel Corrosion Inhibitors in Acid Medium: Syntheses and Characterization. Prot Met Phys Chem Surf 59, 504–515 (2023). https://doi.org/10.1134/S2070205123700594

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700594

Keywords:

Navigation