Log in

Effect of Sodium Citrate as Complexing Agent on the Electrodeposited CuZn Alloys: Electrochemical, Morphology, Structure, and Electrical Resistivity Studies

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this study, sodium citrate (SC) ions were applied as a complexing agent in the co-deposition of CuZn alloy thin film coatings from nontoxic sulphate electrolyte at room temperature. This study examined the effects of SC ion concentrations on morphology, electrical resistivity, and structure of the deposited thin films. Using the cyclic voltammetry method, electrochemical analyzes were performed. It was seen in the results of XRD analyzes that merely α and/or β phases were formed in the CuZn thin-film coatings. Average grain sizes, estimated by Scherrer’s formula, were decreased 63% via the addition of SC to the bath. Electrical resistivity properties of electrodeposited CuZn alloys were realized at a wide range temperature between 100 to 405 K. It is seen that when the amount of SC in the electrolyte increases, it decreases the amount of copper in the film, increases the amount of zinc, and increases the electrical resistance of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Lowenheim, F.A., Modern Electroplating, New York: John Wiley and Sons, 1963, p. 473.

    Google Scholar 

  2. Varzi, A., Mattarozzi, L., Cattarin, S., Guerriero, P., and Passerini, S., Adv. Eng. Mater., 2018, vol. 8, p. 1701706.

    Article  Google Scholar 

  3. Safranek, W.H., The Properties of Electrodeposited Metals and Alloys, Elsevier, 1974.

    Google Scholar 

  4. Carlos, I.A. and De Almeida, M.R.H., J. Electroanal. Chem., 2004, vol. 562, p. 153.

    Article  CAS  Google Scholar 

  5. Juskenas, R., Karpaviciene, V., Pakstas, V., Selskis, A., and Kapocius, V., J. Electroanal. Chem., 2007, vol. 602, p. 237.

    Article  CAS  Google Scholar 

  6. Fujiwara, Y. and Enomoto, H., Surf. Coat. Technol., 1988, vol. 35, p. 101.

    Article  CAS  Google Scholar 

  7. Guaus, E. and Torrent-Burgues, J., J. Electroanal. Chem., 2005, vol. 575, p. 301.

    Article  CAS  Google Scholar 

  8. De Almeida, M.R.H., Barbano, E.P., De Carvalho, M.F., Carlos, I.A., Siqueira, J.L.P., and Barbosa, L.L., Surf. Coat. Technol., 2011, vol. 206, p. 95.

    Article  CAS  Google Scholar 

  9. Vinokurov, E.G., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, p. 615.

    Article  CAS  Google Scholar 

  10. Yavuz, A., Hacıibrahimoglu, M.Y., and Bedir, M., Mater. Res. Express, 2018, vol. 5, p. 016401.

    Article  Google Scholar 

  11. Survila, A., Mockus, Z., Kanapeckaite, S., and Stalnionis, G., Electrochim. Acta, 2013, vol. 94, p. 307.

    Article  CAS  Google Scholar 

  12. Ballesteros, J.C., Torres-Martínez, L.M., Juarez-Ramírez, I., Trejo, G., and Meas, Y., J. Electroanal. Chem., 2014, vol. 727, p. 104.

    Article  CAS  Google Scholar 

  13. Ibrahim, M.A. and Bakdash, R.S., Int. J. Electrochem. Sci., 2015, vol. 10, p. 9666.

    Article  Google Scholar 

  14. Das, S., Jena, S., Banthia, S., Mitra, A., Das, S., and Das, K., J. Alloys Compd., 2019, vol. 792, p. 770.

    Article  CAS  Google Scholar 

  15. Özdemir, R. and Karahan, İ.H., Trans. IMF, 2019, vol. 97, p. 95.

    Article  Google Scholar 

  16. Lin, O.W. and Brito Neto, X.T.J., Quim. Nova, 1998, vol. 21, p. 630.

    CAS  Google Scholar 

  17. Pottier, D. and Maurin, G., J. Appl. Electrochem., 1989, vol. 19, no. 3, p. 361.

    Article  CAS  Google Scholar 

  18. Hennayaka, H.M.M.N. and Lee, H.S., Thin Solid Films, 2013, vol. 548, p. 86.

    Article  CAS  Google Scholar 

  19. Kihal, R., J. Electrochem. Sci. Technol., 2017, vol. 8 no. 3, p. 206.

    Article  CAS  Google Scholar 

  20. Bouroushian, M., Kosanovic, T., Karoussos, D., and Spyrellis, N., Electrochim. Acta, 2009, vol. 54, no. 9, p. 2522.

    Article  CAS  Google Scholar 

  21. Cui, Y., Zuo, S., Jiang, J., and Chu, J., Sol. Energy Mater. Sol. Cells, 2011, vol. 95, no. 8, p. 2136.

    Article  CAS  Google Scholar 

  22. Lai, Y., Liu, F., Zhang, Z., Liu, J., Li, Y., Kuang, S., Li, J., and Liu, Y., Electrochim. Acta, 2009, vol. 54, no. 11, p. 3004.

    Article  CAS  Google Scholar 

  23. Kolonits, T., Jenei, P., László, P., Bakonyi, I., Czigány, Z., and Gubicz, J., Surf. Coat. Technol., 2018, vol. 349, p. 611.

    Article  CAS  Google Scholar 

  24. Şişman, I. and Öz, H., Electrochim. Acta, 2011, vol. 56, no. 13, p. 4889.

    Article  Google Scholar 

  25. Oliveira, M.C.F., Azevedo, M., and Cunha, A.A., Thin Solid Films, 2002, vol. 405, no. 1, p. 129.

    Article  CAS  Google Scholar 

  26. Lai, Y., Liu, F., Zhang, Z., Liu, J., Li, Y., Kuang, S., Li, J., and Liu, Y., Electrochim. Acta, 2009, vol. 54, no. 11, p. 3004.

    Article  CAS  Google Scholar 

  27. Han, C., Liu, Q., and Ivey, D.G., Electrochim. Acta, 2008, vol. 53, no. 28, p. 8332.

    Article  CAS  Google Scholar 

  28. El Bahi, B., Galai, M., Cherkaoui, M., and Takenouti, H., Surf. Interfaces, 2020, vol. 19, p. 100466.

    Article  CAS  Google Scholar 

  29. Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry, Kemp, T.J., Ed., Chichester: Ellis Horwood, 1985.

    Google Scholar 

  30. Grujicic, D. and Pesic, B., Electrochim. Acta, 2002, vol. 47, p. 2901.

    Article  CAS  Google Scholar 

  31. Varun, R., Daobin, L., Dong, X., Yamuna, J., and Jean-Christophe, P.G., Recycling, 2021, vol. 6, no. 3, p. 53.

    Article  Google Scholar 

  32. Botian, L., Songjie, W., Zilong, W., Hang, L., Zhitao, C., and Wenjie, M., Small, 2020, vol. 16, p. 2001323.

    Article  Google Scholar 

  33. Adeli, B., Sohi, M.H., and Mehrizi, S., Int. J. Mod. Phys.: Conf. Ser., 2012, vol. 5, p. 696.

    CAS  Google Scholar 

  34. Beattie, S.D. and Dahn, J.R., J. Electrochem. Soc., 2003, vol. 150, no. 11, p. C802.

    Article  CAS  Google Scholar 

  35. Barros, K.S., Ortega, E.M., Perez-Herranz, V., and Espinosa, D.C.R., J. Electroanal. Chem., 2020, vol. 865, p. 114129.

    Article  CAS  Google Scholar 

  36. Le, D.T., Cho, J.H., and Ju, H., J. Asian Ceram. Soc., 2021, vol. 9, no. 3, p. 838.

    Article  Google Scholar 

Download references

Funding

We would like to thank Mustafa Kemal University BAP unit for providing the financial support of this research project (MKU-BAP-1204 D 0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasim Ozdemir.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasim Ozdemir, İsmail Hakki Karahan Effect of Sodium Citrate as Complexing Agent on the Electrodeposited CuZn Alloys: Electrochemical, Morphology, Structure, and Electrical Resistivity Studies. Prot Met Phys Chem Surf 59, 445–452 (2023). https://doi.org/10.1134/S207020512370051X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512370051X

Keywords:

Navigation