Log in

Nonequilibrium Characteristics of Heat Transfer of Copper in a Wide Temperature Range

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The characteristics of nonequilibrium heat transfer of copper, such as thermal conductivity and heat capacity, are obtained in a wide temperature range (300 ≤ T ≤ 5700 K), including the region of melting-crystallization phase transformations by mathematical modeling. As is known, there are two mechanisms of heat transfer in a solid body: by elastic vibrations of the lattice and by free electrons. When determining these characteristics of copper heat transfer, the lattice and electronic components were taken into account. Modeling of the characteristics of heat transfer of the copper electronic subsystem in this work is based on the use of quantum statistics of the electron gas using the Fermi–Dirac integrals. The properties of the phonon subsystem were determined within the framework of the atomistic approach. The interaction potential of particles of the “embedded atom” family EAM was used for modeling. The simulation results were compared with the results of alternative calculations. The total heat capacity and thermal conductivity of copper, obtained by summing the electronic and phonon components, are compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. V. Mazhukin, V. I. Mazhukin, and M. M. Demin, “Modeling of femtosecond laser ablation of Al film by laser pulses,” Appl. Surf. Sci. 257 (12), 5443–5446 (2011). https://doi.org/10.1016/j.apsusc.2010.11.154

    Article  Google Scholar 

  2. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O. Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597–602 (2001). https://doi.org/10.1038/35098012

    Article  Google Scholar 

  3. E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (Jenny Stanford, New York, 2011).

    Book  Google Scholar 

  4. E. G. Gamaly, Femtosecond Laser-Matter Interactions: Solid-Plasma-Solid Transformations at the Extreme Energy Density, 2nd ed. (Jenny Stanford, Singapore, 2022).

  5. G. M. Petrov, A. Davidson, D. Gordon, and J. Peñano, “Modeling of short-pulse laser-metal interactions in the Warm Dense Matter regime using the two-temperature model,” Phys. Rev. E 103 (3), 033204 (2021). https://doi.org/10.1103/PhysRevE.103.033204

    Article  Google Scholar 

  6. V. I. Mazhukin, M. M. Demin, A. V. Shapranov, and A. V. Mazhukin, “Role of electron pressure in the problem of femtosecond laser action on metals,” Appl. Surf. Sci. 530, 147227 (2020). https://doi.org/10.1016/j.apsusc.2020.147227

    Article  Google Scholar 

  7. M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, “Relaxation between electrons and the crystalline lattice,” Sov. Phys. JETP 4 (2), 173–178 (1957).

    MATH  Google Scholar 

  8. V. I. Mazhukin, “Kinetics and dynamics of phase transformations in metals under action of ultrashort high-power laser pulses,” in Laser Pulses – Theory, Technology, and Applications, Ed. by I. Peshko (IntechOpen, R-ijeka, Croatia, 2012), Chapter 8, pp. 219–276. https://doi.org/10.5772/50731

  9. A. V. Mazhukin, O. N. Koroleva, V. I. Mazhukin, and A. V. Shapranov, “Continual and molecular dynamics approaches in determining thermal properties of silicon,” Proc. SPIE 10453, 104530Y (2017). https://doi.org/10.1117/12.2271999

    Article  Google Scholar 

  10. P. A. Loboda, N. A. Smirnov, A. A. Shadrin, and N. G. Karlykhanov, “Simulation of absorption of femtosecond laser pulses in solid-density copper,” High Energy Density Phys. 7 (4), 361–370 (2011). https://doi.org/10.1016/j.hedp.2011.06.007

    Article  Google Scholar 

  11. V. I. Mazhukin, O. N. Koroleva, A. V. Shapranov, M. M. Demin, and A. A. Aleksashkina, “Determination of thermal properties of gold in the region of melting–crystallization phase transition: Molecular dynamics approach,” Math. Models Comput. Simul. 14 (4), 662–676 (2022). https://doi.org/10.1134/S2070048222040068

    Article  MATH  Google Scholar 

  12. V. I. Mazhukin, M. M. Demin, and A. A. Aleksashkina, “Atomistic modeling of thermophysical properties of copper in the region of the melting point,” Math. Montis. XLI, 99–111 (2018).

    MATH  Google Scholar 

  13. D. P. Sellan, E. S. Landry, J. E. Turney, A. J. H. McGaughey, and C. H. Amon, “Size effects in molecular dynamics thermal conductivity predictions,” Phys. Rev. B 81 (21), 214305 (2010). https://doi.org/10.1103/PhysRevB.81.214305

    Article  Google Scholar 

  14. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, “Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations,” Phys. Rev. B 63 (22), 224106 (2001). https://doi.org/10.1103/PhysRevB.63.224106

    Article  Google Scholar 

  15. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

    MATH  Google Scholar 

  16. Yu. V. Martynenko and Yu. N. Yavlinskii, “Cooling of the electron gas of a metal at high temperatures,” Sov. Phys. Dokl. 28, 391–392 (1983).

    Google Scholar 

  17. D. V. Sivukhin, General Course of Physics. Vol. II: Thermodynamics and Molecular Physics (Fizmatlit, Moscow, 2005) [in Russian].

  18. Physical Quantities: Handbook, Ed. by I. S. Grigoriev and E. Z. Melikhov (Energoatomizdat, Moscow, 1991) [in Russian].

  19. Z. Tong, S. Li, X. Ruan, and H. Bao, “Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals,” Phys. Rev. B 100 (14), 144306 (2019). https://doi.org/10.1103/PhysRevB.100.144306

    Article  Google Scholar 

  20. L. Verlet, “Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Phys. Rev. 159 (1), 98–103 (1967). https://doi.org/10.1103/PhysRev.159.98

    Article  Google Scholar 

  21. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81 (8), 3684–3690 (1984). https://doi.org/10.1063/1.448118

    Article  Google Scholar 

  22. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117 (1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  23. L. Hu, W. J. Evans, and P. Keblinski, “One-dimensional phonon effects in direct molecular dynamics method for thermal conductivity determination,” J. Appl. Phys. 110 (11), 113511 (2011). https://doi.org/10.1063/1.3660234

    Article  Google Scholar 

  24. O. N. Koroleva, M. M. Demin, A. V. Mazhukin, and V. I. Mazhukin, “Modeling of electronic and phonon thermal conductivity of silicon in a wide temperature range,” J. Phys.: Conf. Ser. 1787, 012026 (2021). https://doi.org/10.1088/1742-6596/1787/1/012026

    Article  Google Scholar 

  25. A. A. Aleksashkina, M. M. Demin, and V. I. Mazhukin, “Molecular dynamic calculation of lattice thermal conductivity of gold in the melting-crystallization region,” Math. Montis. XLVI, 106–122 (2019). https://doi.org/10.20948/mathmontis-2019-46-9

    Article  MathSciNet  MATH  Google Scholar 

  26. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  27. Y. Wang, Z. Lu, and X. Ruan, “First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering,” J. Appl. Phys. 119 (22), 225109 (2016). https://doi.org/10.1063/1.4953366

    Article  Google Scholar 

  28. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud (Eds.), “JANAF Thermochemical Tables, Third edition,” J. Phys. Chem. Ref. Data 14 (Suppl. 1), 1–1856 (1985).

  29. V. E. Zinov’ev, Thermophysical Properties of Metals at High Temperatures (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation, project no. 18-11-00318.

The results were obtained using the equipment of Shared Resource Center of the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences (http://ckp.kiam.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Koroleva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazhukin, V.I., Koroleva, O.N., Demin, M.M. et al. Nonequilibrium Characteristics of Heat Transfer of Copper in a Wide Temperature Range. Math Models Comput Simul 15, 415–426 (2023). https://doi.org/10.1134/S2070048223030110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223030110

Keywords:

Navigation