Log in

Collaborative Computing Methods for One-Dimensional and Three-Dimensional Problems of Computational Fluid Dynamics

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

This article presents a method of collaborative one-dimensional (1D)–three-dimensional (3D) modeling of computational fluid dynamics. The method is based on the simultaneous calculation of 3D and 1D areas and linking the two parts of the problem by transferring the boundary conditions. The 3D approximation region is modeled based on the solution of Navier-Stokes equations. The 1D regions are calculated using the basic conservation laws and the empirical characteristics of elements. The proposed solutions are validated through several tasks. For each task, the results are compared with the available analytical solutions or the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. C. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques, Vol. 2: Specific Techniques for Different Flow Categories (Springer, Berlin, Heidelberg, 1991).

  2. K. V. Volkov, Yu. N. Deryugin, A. S. Kozelkov, V. N. Emelyanov, and I. V. Teterina, Difference Schemes in Problems of Gas Dynamics on Unstructured Grids (Fizmatlit, Moscow, 2014) [in Russian].

    Google Scholar 

  3. A. S. Kozelkov, D. P. Meleshkina, A. A. Kurkin, N. V. Tarasova, S. V. Lashkin, and V. V. Kurulin, “Fully implicit method for solution of Navier-Stokes equations for simulation of multiphase flows with free surface,” Vychisl. Tekhnol. 21 (5), 54–76 (2016).

    MATH  Google Scholar 

  4. A. S. Kozelkov, V. V. Kurulin, S. V. Lashkin, R. M. Shagaliev, and A. V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications,” Comput. Math. Math. Phys. 56, 1506–1516 (2016).

    Article  MathSciNet  Google Scholar 

  5. K. V. Volkov, Yu. N. Deryugin, V. N. Emelyanov, A. G. Karpenko, A. S. Kozelkov, and I. V. Teterina, Methods of Accelerating Gas-Dynamic Calculations on Unstructured Grids (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  6. A. P. Merenkov and V. Ya. Khasilev, Theory of Hydraulic Circuits (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  7. I. E. Idelchik, Hydraulic Resistance Reference Book (Mashinostroenie, Moscow, 1992) [in Russian].

    Google Scholar 

  8. L. Formaggia, J. F. Gerbeau, F. Nobile, and A. Quarteroni, “On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels,” Comput. Methods Appl. Mech. Eng. 191, 561–582 (2001).

    Article  MathSciNet  Google Scholar 

  9. P. Lu, Q. Gao, and Y. Wang, “The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management,” Appl. Therm. Eng. 104, 42–53 (2016).

    Article  Google Scholar 

  10. S. C. Pang, M. A. Kalam, H. H. Masjuki, and M. A. Hazrat, “A review on air flow and coolant flow circuit in vehicles' cooling system,” Int. J. Heat Mass Transfer 55, 6295–6306 (2012).

    Article  Google Scholar 

  11. T. K. Dobroserdova and M. A. Olshanskii, “A finite element solver and energy stable coupling for 3D and 1D fluid models,” Comput. Methods Appl. Mech. Eng. 259, 166–176 (2013).

    Article  MathSciNet  Google Scholar 

  12. W. Peng, Z. Yun, Z. Zheng**, Q. Lei, and Z. Zhixiang, “A novel multi-fidelity coupled simulation method for flow systems,” Chin. J. Aeronaut. 26, 868–875 (2013).

    Article  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, Oxford, 1987; Nauka, Moscow, 1986).

  14. J. H. Ferziger and M. Peric, Computational Method for Fluid Dynamics (Springer, New York, 2002).

    Book  Google Scholar 

  15. S. V. Lashkin, A. S. Kozelkov, D. P. Meleshkina, A. V. Yalozo, and N. V. Tarasova, “Numerical simulation of viscous incompressible flow by a segregated and coupled SIMPLE-type algorithm,” Mat. Model. 28 (6), 64–76 (2016).

    MathSciNet  MATH  Google Scholar 

  16. A. S. Kozelkov, “The numerical technique for the landslide tsunami simulations based on Navier-Stokes equations,” J. Appl. Mech. Tech. Phys. 58, 1192–1210 (2017).

    Article  MathSciNet  Google Scholar 

  17. A. S. Kozelkov, A. A. Kurkin, E. N. Pelinovsky, E. S. Tyatyushkina, V. V. Kurulin, and N. V. Tarasova, “Landslide-type tsunami modelling based on the Navier-Stokes equations,” Sci. Tsunami Hazards 35 (3), 106–144 (2016).

    Google Scholar 

  18. R. I. Issa, A. D. Gosman, and A. P. Watkins, “The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme,” J. Comput. Phys. 62, 66–82 (1986).

    Article  MathSciNet  Google Scholar 

  19. A. S. Kozelkov, R. M. Shagaliev, S. M. Dmitriev, A. A. Kurkin, K. N. Volkov, Yu. N. Deryugin, V. N. Emelyanov, E. N. Pelinovskii, and M. A. Legchanov, Mathematical Models and Algorithms for Numerical Modeling of Hydrodynamics and Aerodynamics Problems, The School-Book (NGTU, Nizh. Novgorod, 2014) [in Russian].

    Google Scholar 

  20. K. N. Volkov, A. S. Kozelkov, S. V. Lashkin, N. V. Tarasova, and A. V. Yalozo, “A parallel implementation of the algebraic multigrid method for solving problems in dynamics of viscous incompressible fluid,” Comput. Math. Math. Phys. 57 (12), 2030–2046 (2017).

    Article  MathSciNet  Google Scholar 

  21. A. V. Yalozo, A. S. Kozelkov, D. Yu. Strelets, A. V. Kornev, I. L. Materova, E. A. Levchenko, and I. N. Lapenkov, “Mathematical modeling of the aircraft fuel system,” Polet, No. 6, 12–24 (2018).

    Google Scholar 

  22. A. V. Yalozo, A. S. Kozelkov, V. V. Kurukin, I. L. Materova, A. V. Kornev, and D. Yu. Strelets, “Modeling of branched pipeline systems,” Mat. Model. 30 (10), 123–138 (2018).

    MATH  Google Scholar 

  23. A. S. Kozelkov, A. A. Kurkin, V. V. Kurulin, M. A. Legchanov, E. S. Tyatyushkina, and Y. A. Tsibereva, “Investigation of the application of RANS turbulence models to the calculation of nonisothermal low-Prandtl-number flows,” Fluid Dyn. 50, 501–513 (2015).

    Article  MathSciNet  Google Scholar 

  24. A. S. Kozelkov, O. L. Krutyakova, A. A. Kurkin, V. V. Kurulin, and E. S. Tyatyushkina, “Zonal RANS-LES approach based on an algebraic Reynolds stress model,” Fluid Dyn. 50, 621–628 (2015).

    Article  MathSciNet  Google Scholar 

  25. A. S. Kozelkov, A. A. Kurkin, E. N. Pelinovsky, V. V. Kurulin, and E. S. Tyatyushkina, “Numerical modeling of the 2013 meteorite entry in Lake Chebarkul, Russia,” Nat. Hazards Earth Syst. Sci. 17, 671–683 (2017).

    Article  Google Scholar 

  26. V. B. Betelin, R. M. Shagaliev, S. V. Aksenov, I. M. Belyakov, Y. N. Deryuguin, A. S. Kozelkov, D. A. Korchazhkin, V. F. Nikitin, A. V. Sarazov, and D. K. Zelenskiy, “Mathematical simulation of hydrogen-oxygen combustion in rocket engines using LOGOS code,” Acta Astronaut. 96, 53–64 (2014).

    Article  Google Scholar 

  27. V. V. Kurulin, A. S. Kozelkov, M. A. Lokshin, D. Yu. Strelets, A. V. Kornev, V. A. Stasenkov, I. L. Sharipova, and S. V. Yatsevich, “Numerical study of the causes of cavitation erosion in a pipeline of complex geometric configuration,” in Proceedings of the 11th All-Russia Workshop on Fundamental Problems of Theoretical and Applied Mechanics, Aug. 20–24,2015, Kazan, 2015, pp. 2215–2216.

  28. A. V. Yalozo, I. L. Materova, V. V. Kurulin, A. S. Kozelkov, A. V. Kornev, I. N. Lapenkov, and E. A. Levchenko, “Development of engineering software for aircraft fuel system design,” in Proceedings of the 1st All-Russia Conference with International Participation on Digital Engineering Analysis Tools, Nov. 28–30, 2017, Tula (2017), pp. 171–182.

  29. A. V. Yalozo, I. L. Materova, V. V. Kurulin, A. S. Kozelkov, V. Yu. Gerasimov, I. N. Lapenkov, and E. A. Levchenko, “Mathematical modeling of aircraft fuel systems,” in Proceedings of the 21st All-Russia Conference and Youth School-Conference on Theoretical Foundations of the Construction of Numerical Algorithms and the Solution of Problems of Mathematical Physics Dedicated to the memory of K. I. Babenko, Sept. 5–11, 2016, Novorossiisk (2016), pp. 58–59.

Download references

Funding

The study was carried out as part of state assignment nos. 5.4568.2017/6.7 and 5.5176.2017/8.9 and was supported by grants of the Russian President for governmental support of leading Russian scientific schools (SS-2685.2018.5) and scientific studies of young PhD and DSc scholars (YD-4874.2018.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yalozo.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Trubitsyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalozo, A.V., Kozelkov, A.S., Kurkin, A.A. et al. Collaborative Computing Methods for One-Dimensional and Three-Dimensional Problems of Computational Fluid Dynamics. Math Models Comput Simul 12, 536–545 (2020). https://doi.org/10.1134/S2070048220040213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048220040213

Keywords:

Navigation