Log in

Estimation of Linkages between Biometric Indexes of Forests and Pattern of Canopy Spaces on Super-High-Resolution Satellite Images

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This paper presents the results of studying a promising area related to the remote assessment of canopy spaces in forests by thresholding methods of image segmentation. The study is conducted based on the example of mixed forests in the Losiny Ostrov National Park. The proposed methodological approach to assessing the pattern of forest canopy on super-high (detailed) resolution satellite images is based on an analysis of light and shaded plots of canopy spaces using image-thresholding algorithms.

The pixel count for different brightness thresholds give enough information to estimate a range of biometric indexes, including volume density and average age and height of stands from statistical relationships. The accuracy of estimates is assessed for prescribed deviations and verified against the norms of estimation of corresponding taxation data.

We have found a statistical relationship of forest-canopy morphology indicators with brightness thresholds for shaded plots of canopy spaces and stemwood phytomass in forest ecosystems. Thus, super-high-resolution images may be considered an information basis for estimating the biometric parameters of stands, morphological indicators of forest canopy, and the productivity of forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartalev, S.A. and Breido, M.D., Automated analysis of taxation characteristics of shrub vegetation of the deserts according to remote data sensing, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 1989, no. 4, pp. 94–102.

    Google Scholar 

  • Braslavskaya, T.Yu., Gradient analysis of floristic composition and ecological structure of herbal layer in flood-plain forests, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2012, vol. 14, no. 1 (5), pp. 1202–1205.

    Google Scholar 

  • Breido, M.D., Zhirin, V.M., Bartalev, S.A., and Bakhtinova, E.V., Characteristics of fodder resources of desert pastures according to aerospace data, Issled. Zemli Kosmosa, 1989, no. 3, pp. 66–76.

    Google Scholar 

  • Culvenor, D.S., TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery, Comput. Geosci., 2002, vol. 28, no. 1, pp. 33–44.

    Article  Google Scholar 

  • Daliakopoulos, I., Grillakis, G., Koutroulis, A., and Tsanis, I., Tree crown detection on multispectral VHR satellite imagery, Photogramm. Eng. Remote Sens., 2009, vol. 75, no. 10, pp. 1201–1211.

    Article  Google Scholar 

  • Evans, B., Lyons, T.J., Barber, P.A., Hardy, G., and Stone, C., Dieback classification modeling using high-resolution digital multispectral imagery and in situ assessments of crown condition, Remote Sens. Lett., 2012, vol. 3, no. 6, pp. 541–550.

    Article  Google Scholar 

  • Franklin, S.E., Maudie, A.J., and Lavigne, M.B., Using spatial co-occurrence texture to increase forest structure and species composition classification accuracy, Photogramm. Eng. Remote Sens., 2001, no. 67, pp. 849–855.

    Google Scholar 

  • Frazer, G., Fournier, R., Trofymow, J., and Hall, R., A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission, Agric. For. Meteorol., 2001, vol. 109, no. 4, pp. 249–263.

    Article  Google Scholar 

  • Immitzer, M., Vuolo, F., and Atzberger, C., First experience with Sentinel-2 data for crop and tree species classifications in central Europe, Remote Sens., 2016, vol. 8, no. 3, pp. 166.

    Article  Google Scholar 

  • Karantzalos, K. and Argialas, D., Towards automatic olive trees extraction from aerial and satellite imagery, Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., 2004, vol. 35, no. 5, pp. 360–365.

    Google Scholar 

  • Karantzalos, K. and Argialas, D., Automatic detection and tracking of oil spills in SAR imagery with level set segmentation, Int. J. Remote Sens., 2008, vol. 29, no. 21, pp. 6281–6296.

    Article  Google Scholar 

  • Katoh, M., Classifying tree species in a northern mixed forest using high-resolution IKONOS data, J. For. Res., 2004, vol. 9, no. 1, pp. 7–14.

    Article  Google Scholar 

  • Kravtsova, V.I., Spatial structure of tundra-taiga ecotone on Putorana Plateau according to high-resolution satellite images, Vestn. Mosk. Univ., Ser. 5: Geogr., 2012, no. 1, pp. 67–74.

    Google Scholar 

  • Kravtsova, V.I., Features of interpretation of northern forests in ultrahigh resolution satellite images, Contemp. Probl. Ecol., 2012, vol. 5, no. 7, pp. 612–620.

    Article  Google Scholar 

  • Kravtsova, V.I. and Loshkareva, A.R., Analysis of northern forest margin according to different-resolution satellite images, Vestn. Mosk. Univ., Ser. 5: Geogr., 2010, no. 6, pp. 49–57.

    Google Scholar 

  • Kurnaev, S.F., Lesorastitel’noe raionirovanie SSSR (Forest Zonation of USSR), Moscow: Nauka, 1973.

    Google Scholar 

  • Lertzman, K., Sutherland, G., Inselberg, A., and Saunders S., Canopy gaps and the landscape mosaic in a costal temperate rainforest., Ecology, 1996, vol. 77, no. 4, pp. 1254–1270.

    Article  Google Scholar 

  • Lesoustroitel’naya instruktsiya, utverzhdennaya Prikazom Rosleskhoza ot 12 dekabrya 2011 g., no. 516 (Forestry Instruction Approved by the Federal Forestry Agency Order No. 516 of December 12, 2011), Moscow, 2012.

  • Lukina, N.V., Orlova, M.A., Perminova, I.V., Khusainova, V.S., Vorob’eva, D.N., and Artemkina, N.A., Metabolomics of forest ecosystems: problems and prospects, Lesovedenie, 2016, no. 6, pp. 457–465.

    Google Scholar 

  • Malahlela, O., Cho, M.A., and Mutanga, O., Map** canopy gaps in an indigenous subtropical coastal forest using high-resolution Worldview-2 data, Int. J. Remote Sens., 2014, vol. 35, no. 17, pp. 6397–6417.

    Article  Google Scholar 

  • Martin, M.E., Newman, S.D., Aber, J.D., and Congalton, R.G., Determining forest species composition using high spectral resolution remote sensing data, Remote Sens. Environ., 1998, no. 65, pp. 249–254.

    Article  Google Scholar 

  • Mirin, D.M., Phytocenotic elements of heterogeneity of vegetation cover, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2012, vol. 14, no. 1 (5), pp. 1320–1323.

    Google Scholar 

  • Nefed’ev, V.V., Zhirin, V.M., Lyameborshai, S.Kh., Shapochkin, M.S., Shatalov, A.V., and Eidlina, S.P., Istoriya i sostoyanie lesov Losinogo ostrova (The History and Conditions of Forests of Losinyi Island), Moscow: Prima-Press-M, 2000.

    Google Scholar 

  • Nelson, T., Niemann, O., and Wulder, M., Spatial statistical techniques for aggregating point objects extracted from high spatial resolution remotely sensed imagery, J. Geogr. Syst., 2002, vol. 4, no. 4, pp. 423–433.

    Article  Google Scholar 

  • Nelson, T., Roots, B., Wilder, M., and Feick, R., Predicting Forest age classes from high spatial resolution remotely sensed imagery using Voronoi polygon aggregation, Geoinformatica, 2004, vol. 8, no. 2, pp. 143–155.

    Article  Google Scholar 

  • Novichikhin, A.E. and Tutubalina, O.V., Integration of algorithms for processing the high-resolution satellite images for automated decryption of forest vegetation, in Zemlya iz kosmosa: naibolee effektivnye resheniya (The Earth form Space: Most Effective Solutions), Moscow: Skaneks, 2009, no. 3, pp. 40–42.

    Google Scholar 

  • Orlova, M.A., Lukina, N.V., and Smirnov, V.E., Selection of samples of forest litter taking to account mosaic structure of forest biogeocenoses, Lesovedenie, 2015, no. 3, pp. 214–221.

    Google Scholar 

  • Palace, M., Keller, M., Asner, G., Hagen, S., and Braswell, B., Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties, Biotropica, 2008. V 40, no. 2, pp. 141–150.

    Google Scholar 

  • Pinz, A., Tree isolation and species classification, Proc. Int. Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, Victoria, BC: Can. For. Service, Pac. For. Center, 1999, pp. 127–139.

    Google Scholar 

  • Samoilovich, G.G., Primenenie aerofotos”emki i aviatsii v lesnom khozyaistve (Use of Aerospace Imaging and Aviation in Forestry), Moscow: Lesnaya Prom-st’, 1964.

    Google Scholar 

  • Smirnova, O.V. and Bobrovskii, M.V., Structural-dynamic organization of forest ecosystems, in Monitoring biologicheskogo raznoobraziya lesov Rossii (Monitoring of Biological Diversity of Russian Forests), Isaev, A.S., Ed., Moscow: Nauka, 2008, pp. 58–70.

    Google Scholar 

  • Song, C., Estimating tree crown size with spatial information of high-resolution optical remotely sensed imagery, Int. J. Remote Sens., 2007, vol. 28, no. 15, pp. 3305–3322.

    Article  Google Scholar 

  • Sukhikh, V.I., Aerokosmicheskie metody v lesnom khozyistve i landshaftnom stroitel’stve: uchebnik (Aerospace Methods in Forestry and Landscape Construction: Tutorial), Yoshkar-Ola: Mariisk. Gos. Tekh. Univ., 2005.

    Google Scholar 

  • Sukhikh, V.I., Zhirin, V.M., Ziemelis, T.A., and Shatalov, A.V., Use the high-resolution satellite images for forest taxation, Issled. Zemli Kosmosa, 1996, no. 2, pp. 45–56.

    Google Scholar 

  • Warner, T., Lee, J., and McGraw, J., Delineation and identification of individual trees in the eastern deciduous forest, Proc. Int. Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, Victoria, BC: Can. For. Service, Pac. For. Center, 1999, pp. 81–91.

    Google Scholar 

  • Wulder, M.A., Nieman, K.O., and Goodenough, D.G., Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery, Remote Sens. Environ., 2000, vol. 73, pp. 103–114.

    Article  Google Scholar 

  • Zhirin, V.M., Determination of volume density of plain forests by means of super-high resolution satellite images, Materialy VI Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Aerokosmicheskie metody i geoinformatsionnye tekhnologii v lesovedenii, lesnom khozyaistve i ekologii,” g. Moskva, 20–22 aprelya 2016 g. (Proc. VI All-Russ. Conf. with Int. Participation “Aerospace Methods and GIS Technologies in Forestry and Ecology,” Moscow, April 20–22, 2016), Moscow: Tsentr Probl. Ekol. Produkt., Ross. Akad. Nauk, 2016, pp. 111–113.

    Google Scholar 

  • Zhirin, V.M., El’man, R.I., and Ageev, V.N., Automated analysis of resources of larch plantations according to aerospace images, in Lesoustroistvo, taksatsiya, aerometody (Forestry, Taxation, and Aerospace Methods), Leningrad: Leningr. Nauchno-Issled. Inst. Lesn. Khoz., 1978, pp. 128–132.

    Google Scholar 

  • Zhirin, V.M., Knyazeva, S.V., and Eidlina, S.P., The Ecodynamical Study of Forest-forming Process with Space Imagery, Lesovedenie, 2013, no. 5, pp. 76–85.

    Google Scholar 

  • Zhirin, V.M., Knyazeva, S.V., and Eydlina, S.P., Influence of Forest-Canopy Morphology and Relief on Spectral Characteristics of Taiga Forests, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 1019–1028.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Knyazeva.

Additional information

Original Russian Text © V.M. Zhirin, S.V. Knyazeva, S.P. Eidlina, 2018, published in Lesovedenie, 2018, No. 3, pp. 163–177.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirin, V.M., Knyazeva, S.V. & Eidlina, S.P. Estimation of Linkages between Biometric Indexes of Forests and Pattern of Canopy Spaces on Super-High-Resolution Satellite Images. Contemp. Probl. Ecol. 11, 743–753 (2018). https://doi.org/10.1134/S1995425518070107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425518070107

Keywords

Navigation