Log in

Operational Independence, Faithful Maps and Minimal Tensor Products

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We characterize the minimal tensor product of two \(C^{\ast}\)-algebras in terms of extension properties of faithful completely positive maps on partial algebras. We discuss connections with the theory of independent quantum subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

REFERENCES

  1. H. Araki, Mathematical Theory of Quantum Fields (Oxford Univ. Press, New York, 2009).

    MATH  Google Scholar 

  2. L. J. Bunce and J. Hamhalter, ‘‘\(C^{\ast}\)-independence, product states and commutation,’’ Ann. Henri Poincare 5, 1081–1095 (2004).

    Article  MathSciNet  Google Scholar 

  3. R. Conti and J. Hamhalter, ‘‘Independence of group algebras,’’ Math. Nachr. 283, 818–827 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Haag and D. Kastler, ‘‘An algebric approach to quantum field theory,’’ J. Math. Phys. 5, 848–861 (1964).

    Article  MATH  Google Scholar 

  5. J. Hamhalter and S. **, ‘‘Operational independence and tensor products of \(C^{\ast}\)-algebra,’’ J. Math. Phys. 58 (2017).

  6. M. Florig and S. J. Summers, ‘‘On the statistical independence of algebras of observables,’’ J. Math. Phys. 38, 1318–1328 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Hamhalter, ‘‘Statistical independence of operator algebras,’’ Ann. Inst. Henri Poincaré 67, 447–462 (1997).

    MathSciNet  MATH  Google Scholar 

  8. J. Hamhalter, ‘‘\(C^{\ast}\)-independence and \(W^{\ast}\)-independence of von Neumann algebras,’’ Math. Nachr. 239–240, 146–156 (2002).

    Article  Google Scholar 

  9. J. Hamhalter, Quantum Measure Theory (Kluwer Academic, Dordrecht, 2003).

    Book  MATH  Google Scholar 

  10. K. Kraus, States, Effects, and Operations (Springer, Berlin, 1983).

    MATH  Google Scholar 

  11. G. Pisier, Tensor Products of \(C^{\ast}\) -Algebras and Operator Spaces: The Conners–Kirchberg Problem, Vol. 96 of London Mathematical Society Student Texts (London Math. Soc., London, 2020).

  12. M. Redei, Quantum Logic in Algebraic Approach, Vol. 91 of Fundamental Theories of Physics (Kluwer Academic, Dordrecht, 1998).

  13. M. Redei and S. J. Summers, ‘‘When are quantum systems operationally independent?,’’ Int. J. Theor. Phys. 49, 3250–3261 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Redei, ‘‘Operational separability and operational independence in algebraic quantum mechanics,’’ Found. Phys. 40, 1439–1449 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Roos, ‘‘Independence of local algebras in quantum field theory,’’ Commun. Math. Phys. 37, 273–286 (1974).

    Google Scholar 

  16. S. J. Summers, ‘‘On the independence of local algebras in quantum field theory,’’ Rev. Math. Phys. 2, 201–247 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Takesaki, Theory of Operator Algebras, I (Springer, New York, 2002).

    MATH  Google Scholar 

Download references

Funding

The work of Jan Hamhalter was supported by the grants: GA23-04776S ‘‘Interplay of algebraic, metric, geometric and topological structures on Banach spaces’’ and SGS22/053/OHK3/1T/13 ‘‘Methods of modern mathematics and its applications.’’

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Hamhalter or E. Turilova.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamhalter, J., Turilova, E. Operational Independence, Faithful Maps and Minimal Tensor Products. Lobachevskii J Math 44, 2027–2032 (2023). https://doi.org/10.1134/S1995080223060203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223060203

Keywords:

Navigation