Log in

Passivation of Nickel Nanoparticles at Temperatures below 0°C

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

It has been experimentally demonstrated that, at temperatures below 0°C, nickel nanopowder does not ignite in dry air; however, passivation takes place, thus providing the composition stability of nickel nanoparticles in air at ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Tseng and C. Chen, “Dispersion and rheology of nickel nanoparticle inks,” J. Mater. Sci. 41, 1213 (2006).

    Article  Google Scholar 

  2. S. P. Gubin, Y. A. Koksharov, G. B. Khomutov, and G. Y. Yurkov, “Magnetic nanoparticles: preparation, structure and properties,” Russ. Chem. Rev. 74, 489 (2005).

    Article  Google Scholar 

  3. R. Karmhag, T. Tesfamichael, E. Wäckelgård, G. Nikalsson, and M. Nygren, “Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix,” Solar Energy 68, 329 (2000).

    Article  Google Scholar 

  4. S. Rodriguez-Llamazares, J. Merchan, I. Olmedo, H. P. Marambio, J. P. Munoz, P. Jara, J. C. Sturm, B. Chornik, O. Pena, N. Yutronic, and M. J. Kogan, “Ni/Ni oxides nanoparticles with potential biomedical applications obtained by displacement of a nickelorganometallic complex,” J. Nanosci. Nanotechnol. 8, 3820 (2008).

    Article  Google Scholar 

  5. J. Geng and B. F. G. Johnson, in Nanotechnology in Catalysis, Ed. by B. Zhou, S. Hermans, and G. A. Somorjai (Springer, Berlin, 2004), Vol. 1, p.159.

    Google Scholar 

  6. V. Polshettiwar, B. Baruwati, and R. S. Varma, “Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol,” Green Chem. 11, 127 (2009).

    Article  Google Scholar 

  7. P. Song, D. Wen, Z. X. Guo, and T. Korakianitis, “Oxidation investigation of nickel nanoparticles,” Phys. Chem. Chem. Phys. 10, 5057 (2008).

    Article  Google Scholar 

  8. L. Bai, J. Fan, Y. Cao, F. Yuan, A. Zuo, and Q. Tang, “Shape-controlled synthesis of Ni particles via polyol reduction,” J. Cryst. Growth 311, 2474 (2009).

    Article  Google Scholar 

  9. K. H. Kim, Y. B. Lee, S. G. Lee, H. C. Park, and S. S. Park, “Preparation of fine nickel powders in aqueous solution under wet chemical process,” Mater. Sci. Eng. A 381, 337 (2004).

    Article  Google Scholar 

  10. P. K. Khanna, P. V. More, J. P. Jawalkar, and B. G. Bharate, “Effect of reducing agent on the synthesis of nickel nanoparticles,” Mater. Lett. 63, 1384 (2009).

    Article  Google Scholar 

  11. M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, R. A. Kochetkov, V. A. Zelensky, and A. B. Ankudinov, “Features of combustion and passivation of nickel nanoparticles,” Mendeleev Commun. 27 (6) (2017, in press).

    Google Scholar 

  12. M. I. Alymov, N. M. Rubtsov, B. S. Seplyarskii, V. A. Zelensky, and A. B. Ankudinov, “Passivation of iron nanoparticles at subzero temperatures,” Mendeleev Commun. 27 (5) (2017, in press).

    Google Scholar 

  13. P. G. Fox, J. Ehretsmann, and C. E. Brown, “The development of internal structure during thermal decomposition: nickel formate dihydrate,” J. Catal. 20, 67 (1971).

    Article  Google Scholar 

  14. Ya. B. Zel’dovich, G. I. Barenblatt, and R. A. Sunyaev, Selected Works of Yakov Borisovich Zeldovich, Vol. 1: Chemical Physics and Hydrodynamics (Nauka, Moscow, 1984; Princeton Univ. Press, Princeton, 2014).

    Google Scholar 

  15. N. N. Semenov, On Some Problems of Chemical Kinetics and Reaction Ability (Akad. Nauk SSSR, Moscow, 1958) [in Russian].

    Google Scholar 

  16. B. Lewis and G. von Elbe, Combustion, Explosions, and Flame in Gases (Academic, New York, London, 1987).

    Google Scholar 

  17. T. M. Gorrie, P. W. Kopf, and S. Toby, “The kinetics of the reaction of some pyrophoric metals with oxygen,” J. Phys. Chem. 71, 3842 (1967).

    Article  Google Scholar 

  18. S. M. Repinskii, Introduction to Chemical Physics of Solid Surface (Nauka, Novosibirsk, 1993) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Alymov.

Additional information

Original Russian Text © M.I. Alymov, N.M. Rubtsov, B.S. Seplyarskii, V.A. Zelenskii, A.B. Ankudinov, I.D. Kovalev, R.A. Kochetkov, A.S. Shchukin, E.V. Petrov, N.A. Kochetov, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alymov, M.I., Rubtsov, N.M., Seplyarskii, B.S. et al. Passivation of Nickel Nanoparticles at Temperatures below 0°C. Nanotechnol Russia 12, 577–582 (2017). https://doi.org/10.1134/S1995078017060027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017060027

Navigation