Log in

EPR Diagnostics of D,L-Polylactide Porous Matrices Formed in Supercritical CO2

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The regularities of formation of D,L-polylactide porous matrices in supercritical CO2 environment with simultaneous impregnation with paramagnetic biologically active 4-hydroxy-2,2,6,6-tetramethylpiperidine- 1-oxyl (TEMPOL) was studied using spin probe electron paramagnetic resonance (EPR) and optical microscopy. The dependence of the average and local concentration of a dopant on impregnation conditions was assessed. The resulting matrices meet important requirements for porous materials for tissue engineering. Considering that impregnation of a polymer with a paramagnetic compound makes it possible to study the uniform distribution of a dopant in a sample at macroscopic and microscopic levels and to study a structure of a polymer matrix, EPR spectroscopy is a promising method for studying porous polymeric materials formed under supercritical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. García-González, A. Concheiro, and C. Alvarez-Lorenzo, Bioconjugate, Chem. 26, 1159 (2015).

    Article  CAS  Google Scholar 

  2. A. I. Cooper, Adv. Mater. 15, 1049 (2003).

    Article  CAS  Google Scholar 

  3. M. Floren, S. Spilimbergo, A. Motta, and C. Migliaresi, J. Biomed. Mater. Res., Part B 99, 338 (2011).

    Article  CAS  Google Scholar 

  4. O. R. Davies, A. L. Lewis, M. J. Whitaker, H. Tai, K. M. Shakesheff, and S. M. Howdle, Adv. Drug Deliv. Rev. 60, 373 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. L. J. White, V. Hutter, H. Tai, S. M. Howdle, and K. M. Shakesheff, Acta Biomater. 8, 61 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. M. V. Chor and W. Li, Meas. Sci. Technol. 18, 208 (2007).

    Article  CAS  Google Scholar 

  7. A. Bouazza and T. Vangpaisal, Geotextil. Geomembran. 21, 85 (2003).

    Article  Google Scholar 

  8. M. L. Oyen, Mater. Res. 23, 1307 (2008).

    Article  CAS  Google Scholar 

  9. L. I. Cabezas, V. Fernandez, R. Mazarro, I. Gracia, A. de Lucas, and J.-F. Rodriguez, J. Supercrit. Fluids 63, 155 (2012).

    Article  CAS  Google Scholar 

  10. M. Champeau, J.-M. Thomassin, T. Tassaing, and C. Jérôme, J. Control. Release 209, 248 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. N. A. Chumakova, T. A. Ivanova, E. N. Golubeva, and A. I. Kokorin, Appl. Magn. Res. 49 (2018).

    Google Scholar 

  12. I. Wertz and J. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications (McGraw-Hill, New York, 1975).

    Google Scholar 

  13. Nitroxides–Theory, Experiment and Application, Ed. by A. I. Kokorin (InTech, Rijeka, Croatia, 2012).

  14. A. M. Vasserman and A. L. Kovarskii, Spin Labels and Probes in Physical Chemistry of Polymers (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  15. I. A. Grigor’ev, N. I. Tkacheva, and S. V. Momzov, Curr. Med. Chem. 21, 2839 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. M. C. Emoto, Sh. Sato, and H. G. Fujii, Magn. Reson. Chem. 54, 705 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. P. K. Chatterjee, S. Cuzzocrea, P. A. J. Brown, K. Zacharowski, K. N. Stewart, H. Mota-Filipe, and Ch. Thiemermann, Kidney Int. 58, 658 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. C. S. Wilcox, Pharm. Therapeut. 126, 119 (2014).

    Article  CAS  Google Scholar 

  19. K. Matsumoto, M. C. Krishna, and J. B. Mitchell, J. Pharm. Exp. Ther. 310, 1076 (2004).

    Article  CAS  Google Scholar 

  20. O. D. Zakharova, T. S. Frolova, Yu. V. Yushkova, E. I. Chemyak, A. G. Pokrovsky, M. A. Pokrovsky, S.V.Momzov, O. I. Sinitsina, I. A. Grigor’ev, and G. A. Nevinsky, Eur. J. Med. Chem. 122 (21), 127 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. A. S. Kopylov, V. A. Radtsig, N. N. Glagolev, A. B. Solovieva, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 9, 998 (2015).

    Article  CAS  Google Scholar 

  22. E. N. Golubeva, O. I. Gromov, N. A. Chumakova, E. D. Feklichev, M. Ya. Melnikov, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 10, 1229 (2016).

    Article  CAS  Google Scholar 

  23. RF Patent No. 147199 (2014).

  24. Ya. S. Lebedev, O. Ya. Grinberg, A. A. Dubinsky, and O. G. Poluektov, in Bioactive Spin Labels (Springer, Berlin, Heidelberg, 1992), p. 227.

    Google Scholar 

  25. A. L. Buchachenko and A. M. Vasserman, Stable Radicals (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  26. D. A. Chemova and A. Kh. Vorobiev, J. Appl. Polym. Sci. 121, 102 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Chumakova.

Additional information

Original Russian Text © N.A. Chumakova, E.N. Golubeva, T.A. Ivanova, N.N. Vorobieva, P.S. Timashev, V.N. Bagratashvili, 2018, published in Sverkhkriticheskie Flyuidy. Teoriya i Praktika, 2018, Vol. 13, No. 1, pp. 86–93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakova, N.A., Golubeva, E.N., Ivanova, T.A. et al. EPR Diagnostics of D,L-Polylactide Porous Matrices Formed in Supercritical CO2. Russ. J. Phys. Chem. B 12, 1255–1260 (2018). https://doi.org/10.1134/S1990793118080031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118080031

Keywords

Navigation