Log in

Apolipoprotein A-I Inhibits Increased Activity of Chitotriosidase and β-Glucosaminidase in the Liver of Mice with BCG-Induced Tuberculous Inflammation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The aim of this study was to study the activity of lysosomal chitinases (chitotriosidase and β-glucosaminidase) in the liver of mice on a model of BCG-induced tuberculous inflammation after intravenous administration of apolipoprotein A-I. The study was carried out on CBA male mice weighing 20–22 g. Disseminated tuberculous inflammation was modeled by a single intraperitoneal administration of 0.5 mg of BCG vaccine. The activity of chitinases was determined using 4-methylumbelliferyl-β-D-N,N',N''-triacetylchitotrioside and 4-methylumbelliferyl-N-acetyl-β-D-glucosaminidine fluorescent substrates. BCG infection of animals after 4 weeks caused a significant increase in the activity of endogenous chitinases as compared with the control group. Thus, the activity of chitotriosidase increased by 3.05 times (p < 0.001), while that of β-glucosaminidase increased by 1.76 times (p < 0.01). The intravenous administration of apolipoprotein A-I to animals against the background of BCG infection inhibited the increased enzyme activity, the values did not differ significantly from the control values. The results of the conducted studies indicate the ability of apolipoprotein A-I to decrease the increased activity of endogenous lysosomal chitinases in the liver of mice with BCG-induced tuberculous inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bargagli, E., Margollicci, M., Nikiforakis, N., Luddi, A., Perrone, A., Grosso, S. and Rottoli, G., Chitotriosidase activity in the serum of patients with sarcoidosis and pulmonary tuberculosis, Respiration, 2007, vol. 74, p. 548. https://doi.org/10.1159/000100555

    Article  CAS  PubMed  Google Scholar 

  2. Boot, R.G., Renkema, G.H., Verhoek, M., Strijland, A., Bliek, J., de Meulemeester T.M., Mannens, M.M. and Aerts, J.M., The human chitotriosidase gene. Nature of inherited enzyme deficiency, J. Biol. Chem., 1998, vol. 273, p. 25680. https://doi.org/10.1074/jbc.273.40.25680

    Article  CAS  PubMed  Google Scholar 

  3. Boot, R.G., Blommaart, E.F., Swart, E., Ghauharali-van der Vlugt, K., Bijl, N., Moe, C., Place, A. and Aerts, J.M., Identification of a novel acidic mammalian chitinase distinct from chitotriosidase, J. Biol. Chem., 2001, vol. 276, p. 6770. https://doi.org/10.1074/jbc.M009886200

    Article  CAS  PubMed  Google Scholar 

  4. Burger, D. and Dayer, J.M., High-density lipoprotein-associated apolipoprotein A-I: the missing link between infection and chronic inflammation? Autoimmun. Rev., 2002, vol. 1, p. 111. https://doi.org/10.1016/s1568-9972(01)00018-0

    Article  CAS  PubMed  Google Scholar 

  5. Chua, J., Vergne, I., Master, S. and Deretic, V., A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest, Curr. Opin. Microbiol., 2004, vol. 7, p. 71. https://doi.org/10.1016/j.mib.2003.12.011

    Article  CAS  PubMed  Google Scholar 

  6. di Rosa, M., Brundo, V.M., and Malaguarnera, L., New insights on chitinases immunologic activities., World J. Immunol., 2016, vol. 6, p. 96. https://doi.org/10.4049/jimmunol.172.3.181

    Article  Google Scholar 

  7. Elmonem, M.A., van den Heuvel, L.P. and Levtchenko, E.N., Immunomodulatory effects of chitotriosidase enzyme, Enzyme Res., 2016, vol. 2016, p. 2682680. https://doi.org/10.1155/2016/2682680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hmama, Z., Sendide, K., Talal, A., Garcia, R., Dobos, K., and Reiner, N.E., Quantitative analysis of phagolysosome fusion in intact cells: inhibition by mycobacterial lipoarabinomannan and rescue by an 1alpha,25-dihydroxyvitamin D3-phosphoinositide 3-kinase pathway, J. Cell. Sci., 2004, vol. 117, p. 2131. https://doi.org/10.1242/jcs.01072

    Article  CAS  PubMed  Google Scholar 

  9. Hollak, C.E., van Weely, S., van Oers, M.H., and Aerts, J.M., Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease, J. Clin. Invest., 1994, vol. 93, p. 1288. https://doi.org/10.1172/JCI117084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hyka, N., Dayer, J.M., Modoux, C., Kohno, T., Edwards, C.K., Roux-Lombard, P., and Burger, D., Apolipoprotein A-I inhibits the production of interleukin-1 beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes, Blood, 2001, vol. 97, p. 2381. https://doi.org/10.1182/blood.v97.8.2381

    Article  CAS  PubMed  Google Scholar 

  11. Jungbauer, C.G., Uecer, E., Stadler, S., Birner, C., Buchner, S., Maier, L.S., and Luchner A., N-acteyl-ß-D-glucosaminidase and kidney injury molecule-1: new predictors for long-term progression of chronic kidney disease in patients with heart failure, Nephrology (Carlton), 2016, vol. 21, p. 490. https://doi.org/10.1111/nep.12632

    Article  CAS  PubMed  Google Scholar 

  12. Kim, D.H., Park, H.J., Lim, S., Lee, H.G., Koo, J.H., Lee, H.G., Choi, J.O., Oh, J.H., Ha, S.J., Min-Jong, K., and Choi, J.M., Regulation of chitinase-3-like-1 in T cell elicites Th1 nad cytotoxic responses to inhibit lung metastasis, Nat. Commun., 2018, vol. 9, p. 503. https://doi.org/10.1038/s41467-017-02731-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pandit, S., Roy, S., Pillai, J., and Banerjee, S., Formulation and intracellular trafficking of lipid-drug conjugate nanoparticles containing a hydrophilic antitubercular drug for improved intracellular delivery to human macrophages, ACS Omega, 2020, vol. 5, p. 4433. https://doi.org/10.1021/acsomega.9b03523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Polyakov, L.M., Sumenkova, D.V., and Panin, L.E., Effect of plasma lipoproteins and their complexes with polysaccharides on interleukin-1β concentration in macrophages of mice with HA-1 ascitic hepatoma, Bull. Exp. Biol. Med., 2009, vol. 147, p. 466. https://doi.org/10.1007/s10517-009-0557-4

    Article  CAS  PubMed  Google Scholar 

  15. Polyakov, L.M., Knyazev, R.A., Kotova, M.V., Russkikh, G.S., Solov’eva, E.I., and Ryabchenko, A.V., Apolipoprotein A-I Iincreases the activity of lysosomal glycosidases in the liver of mice with BCG-induced tuberculosis inflammation, Sib. Nauchn. Med. Zh., 2021, vol. 41, p. 51. https://doi.org/10.18699/SSMJ20210605

    Article  Google Scholar 

  16. Sumenkova, D.V., Polyakov, L.M., and Panin L.E., Influence of isoniazid complex with A-I apolipoprotein on activity of lysosomal enzymes in mice with tuberculous inflammation model, Eksp. Klin. Farmakol., 2012, vol. 75, p. 29.

    Google Scholar 

  17. Tada, N., Sakamoto, T., Kagami, A., Mochizuk, K., and Kurosaka, K., Antimicrobial activity of lipoprotein particles containing apolipoprotein A-Il., Mol. Cell. Biochem., 1993, vol. 119, p. 171. https://doi.org/10.1007/BF00926868

    Article  CAS  PubMed  Google Scholar 

  18. Tasci, C., Tapan, S., Ozkaya, S., Demirer, E., Deniz, O., Balkan, A., Ozkan, M., Inan, I., Kurt, I., and Bilgic, H., Efficacy of serum chitotriosidase activity in early treatment of patients with active tuberculosis and a negative sputum smear, Ther. Clin. Risk Manage., 2012, vol. 8, p. 369. https://doi.org/10.2147/tcrm.s31752

    Article  CAS  Google Scholar 

  19. Tronsmo, A., and Harman, G.E., Detection and quantification of N-acetyl-beta-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels, Anal. Biochem., 1993, vol. 208, p. 74. https://doi.org/10.1006/abio.1993.1010

    Article  CAS  PubMed  Google Scholar 

  20. Turk, J., ŞahutoĞlu, A.S., Hatice, H., Frese, S.A., and Karav, S., Structural insights of two novel N-acetyl-glucosaminidase enzymes through in silico methods, Turk. J. Chem., 2020, vol. 44, p. 1703. https://doi.org/10.3906/kim-2006-19

    Article  CAS  Google Scholar 

  21. Vergne, I., Chua, J., Lee, H., Lucas, M., Belisle, J., and Deretic, V., Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, p. 4033. https://doi.org/10.1073/pnas.0409716102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wadham, C., Albanese, N., Roberts, J., Wang, L., Bagley, C. J., Gamble, J.R., Rye, K.A., Barter, P.J., Vadas, M.A., and **a, P., High-density lipoproteins neutralize C-reactive protein proinflammatory activity, Circulation, 2004, vol. 109, p. 2116. https://doi.org/10.1161/01.CIR.0000127419.45975.26

    Article  CAS  PubMed  Google Scholar 

  23. Yin, K., Chen, W.J., Zhou, Z.G., Zhao, G.J., Lv, Y.C., Ouyang, X.P., Yu, X.H., Fu, Y., Jiang, Z.S., and Tang, C.K., Apolipoprotein A-I inhibits CD40 proinflammatory signaling via ATP-binding cassette transporter A1-mediated modulation of lipid raft in macrophages, J. Atheroscler. Thromb., 2012, vol. 19, p. 823. https://doi.org/10.5551/jat.12823

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, Z., Homer, R.J., Kim, Y.K., Chen, N.Y., Cohn, L., Qutayba, H.Q., and Elias, J.A., Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation, Science, 2004, vol. 304, p. 1678. https://doi.org/10.1126/science.109533

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Polyakov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The kee**, nutrition, and care of animals and their removal from the experiment were performed according to the principles of humane treatment set out in the “Rules for Conducting Works Using Experimental Animals.”

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, L.M., Kotova, M.V., Trifonova, N.V. et al. Apolipoprotein A-I Inhibits Increased Activity of Chitotriosidase and β-Glucosaminidase in the Liver of Mice with BCG-Induced Tuberculous Inflammation. Cell Tiss. Biol. 17, 436–440 (2023). https://doi.org/10.1134/S1990519X23040090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23040090

Keywords:

Navigation