Log in

On the Existence of Solutions of Nonlinear Boundary Value Problems for Nonshallow Timoshenko-Type Shells with Free Edges

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We study the existence of solutions of a boundary value problem for a system of nonlinear second-order partial differential equations for the generalized displacements under given nonlinear boundary conditions that describes the equilibrium state of elastic nonshallow isotropic inhomogeneous shells of zero Gaussian curvature with free edges in the framework of the Timoshenko shear model. The research method is based on integral representations for generalized displacements containing arbitrary functions that allow the original boundary value problem to be reduced to a nonlinear operator equation for generalized displacements in the Sobolev space. The solvability of the operator equation is established using the contraction map** principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  2. A. M. Lin’kov, Complex Method of Boundary Integral Equations of Elasticity Theory (Nauka, Moscow, 1999) [in Russian].

    Google Scholar 

  3. A. I. Lurie, Theory of Elasticity (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  4. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burguladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  5. V. Z. Parton and P. I. Perlin, Methods of Mathematical Theory of Elasticity (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  6. S. G. Mikhlin, N. F. Morozov, and M. V. Paukshto, Integral Equations in the Theory of Elasticity (SPbGU, St. Petersburg, 1994) [in Russian].

    Google Scholar 

  7. A. Ya. Aleksandrov and Yu. I. Solov’ev, Spatial Problems of the Theory of Elasticity (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  8. G. Fichera, Existence Theorems in Elasticity (Berlin–Heidelberg–New York, Springer, 1972; Mir, Moscow, 1974).

    Google Scholar 

  9. G. Duvaut and J.-L. Lions, Les in equations en mécanique et en physique (Dunod, Paris, 1972; Nauka, Moscow, 1980).

    Google Scholar 

  10. N. F. Morozov, Mathematical Issues in the Theory of Cracks (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  11. A. M. Khludnev, Problems of the Theory of Elasticity in Nonsmooth Domains (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  12. P. G. Ciarlet, Mathematical Theory of Elasticity (Elsevier, Amsterdam, 1988; Mir, Moscow, 1992).

    Google Scholar 

  13. J. M. Ball, “Convexity conditions and existence theorems in nonlinear elasticity,” Arch. Ration. Mech. Anal. 63, 337–403 (1976).

    Article  MathSciNet  Google Scholar 

  14. I. I. Vorovich, Mathematical Problems of the Nonlinear Theory of Shallow Shells (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  15. I. I. Vorovich and L. P. Lebedev, “The problem of the equilibrium of a plate reinforced with stiffeners,” J. Appl. Math. Mech. 63 (1), 79–83 (1999).

    Article  MathSciNet  Google Scholar 

  16. I. I. Vorovich and L. P. Lebedev, “Some issues of continuum mechanics and mathematical problems in the theory of thin-walled structures,” Int. Appl. Mech. 38 (4), 387–398 (2002).

    Article  ADS  Google Scholar 

  17. N. F. Morozov, Selected Two-Dimensional Problems of the Theory of Elasticity (Leningrad. Gos. Univ., Leningrad, 1978) [in Russian].

    Google Scholar 

  18. M. M. Karchevsky, “Study of the solvability of the nonlinear problem of the equilibrium of a shallow free shell,” Uchen. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki 155 (3), 105–110 (2013) [in Russian].

    Google Scholar 

  19. M. M. Karchevsky, “Mixed finite-element method for the nonclassical boundary problems of the theory of shallow shells,” Uchen. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki 158 (3), 322–335 (2016) [in Russian].

    Google Scholar 

  20. V. F. Kirichenko and V. A. Krys’ko, “On the existence of a solution of a nonlinear coupled problem of thermoelasticity,” Differ. Uravn. 20 (6), 1583–1588 (1984) [in Russian].

    Google Scholar 

  21. V. F. Kirichenko, “Solvability of a connected thermoelasticity problem for three-layer shells,” Russ. Math. 56 (9), 57–61 (2012).

    Article  Google Scholar 

  22. K. Z. Galimov, Fundamentals of the Nonlinear Theory of Thin Shells (Kazan. Gos. Univ, Kazan, 1975) [in Russian].

    Google Scholar 

  23. K. Z. Galimov, V. N. Paimushin, and I. G. Teregulov, Foundations of the Nonlinear Theory of Shells (Fen, Kazan, 1996) [in Russian].

    Google Scholar 

  24. S. A. Kabrits, E. I. Mikhailovskii, P. E. Tovstik, K. F. Chernykh, and V. A. Shamina, General Nonlinear Theory of Elastic Shells (SPbGU, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  25. V. A. Eremeev and L. M. Zubov, Mechanics of Elastic Shells (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  26. S. K. Golushko and Yu. V. Nemirovskii, Direct and Inverse Problems of Mechanics of Elastic Composite Plates and Shells of Revolution (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  27. N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Generalized Timoshenko–Reissner model for a multilayer plate,” Mech. Solids 51, 527–537 (2016).

    Article  ADS  Google Scholar 

  28. V. A. Eremeev and L. P. Lebedev, “On solvability of boundary value problems for elastic micropolar shells with rigid inclusions,” Mech. Solids 55, 852–856 (2020).

    Article  ADS  Google Scholar 

  29. S. N. Timergaliev, “On the existence of solutions of a nonlinear boundary value problem for the system of partial differential equations of the theory of Timoshenko type shallow shells with free edges,” Differ. Equations 51 (3), 73–386 (2015). https://doi.org/10.1134/S0012266115030088

    Article  MathSciNet  Google Scholar 

  30. S. N. Timergaliev, “On the problem of solvability of nonlinear equilibrium problems for shallow shells of Timoshenko type,” Prikl. Mat. Mekh. 82 (1), 98–113 (2018) [in Russian].

    Google Scholar 

  31. S. N. Timergaliev, “Method of integral equations for studying the solvability of boundary value problems for the system of nonlinear differential equations of the theory of Timoshenko type shallow inhomogeneous shells,” Differ. Equations 55 (2), 243–259 (2019). https://doi.org/10.1134/S0012266119020095

    Article  MathSciNet  Google Scholar 

  32. S. N. Timergaliev, “On the problem of solvability of nonlinear boundary value problems for arbitrary isotropic shallow shells of the Timoshenko type with free edges,” Russ. Math. 65 (4), 81–97 (2021). https://doi.org/10.3103/S1066369X21040071

    Article  MathSciNet  Google Scholar 

  33. S. N. Timergaliev, “On the existence of solutions to boundary value problems for nonlinear equilibrium equations of shallow anisotropic shells of Timoshenko type in Sobolev space,” Russ. Math. 66 (4), 59–73 (2022). https://doi.org/10.3103/S1066369X22040065

    Article  MathSciNet  Google Scholar 

  34. I. N. Vekua, Generalized Analytical Functions (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  35. N. I. Muskhelishvili, Singular Integral Equations (Nauka, Moscow, 1962) [in Russian].

    Google Scholar 

  36. F. D. Gakhov, Boundary Value Problems (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  37. M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations (Gostekhizdat, Moscow, 1956) [in Russian].

    Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, project no. 23-21-00212, https://rscf.ru/en/project/23-21-00212/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Timergaliev.

Additional information

Translated by V. Potapchouck

CONFLICT OF INTEREST. The author of this work declares that he has no conflicts of interest.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timergaliev, S.N. On the Existence of Solutions of Nonlinear Boundary Value Problems for Nonshallow Timoshenko-Type Shells with Free Edges. J. Appl. Ind. Math. 17, 874–891 (2023). https://doi.org/10.1134/S1990478923040154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478923040154

Keywords

Navigation