Log in

The Activity of Stars with Planetary Systems and Its Impact on the Loss of Atmosphere by Hot Exoplanets

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

The review presents the results of a wide range of studies on modeling the atmospheres and shells of exoplanets and studying the processes associated with the activity of the parent star, performed at the Institute of Astronomy of the Russian Academy of Sciences in recent years. The developed methods of analyzing superflares in solar-type stars are applied to stars with planetary systems and the obtained estimates are used to detail the conditions of extreme stellar activity in the study of atmospheric losses for Earth-type planets in low orbits—super-Earths and sub-Neptunes. The results of calculations of the rate of atmospheric loss for exoplanets in orbits close to the parent star (close-in exoplanets) are presented and it is shown that under conditions of a high level of stellar radiation rigidity, and even more so under conditions of a stellar flare, the contribution of exothermic photochemistry processes to the formation of a flow of supra-thermal hydrogen atoms esca** from the atmosphere becomes significant and comparable to the flow of hydrodynamic outflow. Accordingly, this source of supra-thermalhydrogen atoms should be included in modern aeronomic models of physical and chemical processes in the upper atmospheres of hot exoplanets. Taking into account the contribution of supra-thermal particles in the aeronomic model made it possible to clarify the heating rates of atmospheric gas due to the absorption of hard radiation from the parent star. This, in turn, made it possible to more accurately calculate the values of the rate of mass loss by atmospheres and, accordingly, to study the evolutionary properties of the atmospheres of hot exoplanets. It is also important to note that the kinetic and aeronomic models presented in the review, developed in recent years at the Institute of Astronomy of the Russian Academy of Sciences, will be used to analyze and interpret existing and expected observations of the atmospheres of Earth-type exoplanets. Such work will allow to impose additional restrictions on the models and thereby make them more reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Superflares are usually called flashes with energies \({{10}^{{33}}}{-} {{10}^{{36}}}\) erg.

  2. LC—Long Cadence.

  3. By hard UV, we will understand extreme ultraviolet radiation in the range from 1 to 100 nm, including soft X-rays.

REFERENCES

  1. A. N. Aarnio, S. P. Matt, and K. G. Stassun, Astro- phys. J. 760 (1), 9 (2012).

    Article  ADS  Google Scholar 

  2. V. S. Airapetian, A. Glocer, G. V. Khazanov, et al., Astrophys. J. 836 (1), L3 (2017).

    Article  ADS  Google Scholar 

  3. G. Anglada-Escudé, P. J. Amado, J. Barnes, et al., Nature 536 (7617), 437 (2016).

    Article  ADS  Google Scholar 

  4. D. J. Armstrong, T. A. Lopez, V. Adibekyan, et al., Nature 583 (7814), 39 (2020).

    Article  ADS  Google Scholar 

  5. D. J. Armstrong, C. E. Pugh, A. M. Broomhall, et al., Monthly Notices Royal Astron. Soc. 455 (3), 3110 (2016).

    Article  ADS  Google Scholar 

  6. A. A. Avtaeva and V. I. Shematovich, Solar System Research 55 (2), 150 (2021).

    Article  ADS  Google Scholar 

  7. N.M.Batalha, Proc.Nat. Academy of Science 111 (35), 12647 (2014).

    Article  ADS  Google Scholar 

  8. N. E. Batalha, N. K. Lewis, M. R. Line, et al., Astrophys. J. 856 (2), L34 (2018).

    Article  ADS  Google Scholar 

  9. A. G. Berezutsky, I. F. Shaikhislamov, I. B. Miroshnichenko, et al., Solar System Research 53 (2), 138 (2019).

    Article  ADS  Google Scholar 

  10. D. Bisikalo, P. Kaygorodov, D. Ionov, et al., Astrophys. J. 764 (1), 19 (2013).

    Article  ADS  Google Scholar 

  11. D. V. Bisikalo, P. V. Kaygorodov, and V. I. Shematovich, in Oxford Research Encyclopedia of Planetary Science (Oxford Univ. Press, 2019), id. 103.

  12. D. V. Bisikalo, V. I. Shematovich, A. A. Cherenkov, et al., Astrophys. J. 869 (2), 108 (2018).

    Article  ADS  Google Scholar 

  13. J. J. Bochanski, S. L. Hawley, K. R. Covey, et al., Astron. J. 139 (6), 2679 (2010).

    Article  ADS  Google Scholar 

  14. E. Bolmont, F. Selsis, J. E. Owen, et al., Monthly Notices Royal Astron. Soc. 464 (3), 3728 (2017).

    Article  ADS  Google Scholar 

  15. H. Chen and L. A. Rogers, Astrophys. J. 831 (2), 180 (2016).

    Article  ADS  Google Scholar 

  16. A. Cherenkov, D. Bisikalo, L. Fossati, and C. Möstl, Astrophys. J. 846 (1), id. 31 (2017).

  17. A. A. Cherenkov, I. F. Shaikhislamov, D. V. Bisikalo, et al., Astronomy Reports 63 (2), 94 (2019).

    Article  ADS  Google Scholar 

  18. S. R. Cranmer, Astrophys. J. 840 (2), 114 (2017).

    Article  ADS  Google Scholar 

  19. J. R. A. Davenport, Astrophys. J. 829 (1), 23 (2016).

    Article  ADS  Google Scholar 

  20. J. R. A. Davenport, S. L. Hawley, L. Hebb, et al., Astrophys. J. 797 (2), 122 (2014).

    Article  ADS  Google Scholar 

  21. J. R. A. Davenport, D.M. Kip**, D. Sasselov, et al., Astrophys. J. 829 (2), L31 (2016).

    Article  ADS  Google Scholar 

  22. R. I. Dawson and J. A. Johnson, Annual Rev. Astron. Astrophys. 56, 175 (2018).

    Article  ADS  Google Scholar 

  23. J. A. Dittmann, J. M. Irwin, D. Charbonneau, et al., Nature 544 (7650), 333 (2017).

    Article  ADS  Google Scholar 

  24. E. S. Dmitrienko and I. S. Savanov, Astronomy Reports 61 (10), 871 (2017).

    Article  ADS  Google Scholar 

  25. E. S. Dmitrienko and I. S. Savanov, Astronomy Reports 62 (6), 412 (2018).

    Article  ADS  Google Scholar 

  26. L. Doyle, G. Ramsay, and J. G. Doyle, Monthly Notices Royal Astron. Soc. 494 (3), 3596 (2020).

    Google Scholar 

  27. B. Fuhrmeister, S. Czesla, J. H.M.M. Schmitt, et al., Astron. and Astrophys. 615, A14 (2018).

    Article  Google Scholar 

  28. B. J. Fulton, E. A. Petigura, A. W. Howard, et al., Astron. J. 154 (3), 109 (2017).

    Article  ADS  Google Scholar 

  29. B. S. Gaudi, S. Seager, B. Mennesson, et al., Nature Astronomy 2, 600 (2018).

    Article  ADS  Google Scholar 

  30. M. Gillon, A. H. M. J. Triaud, B.-O. Demory, et al., Nature 542 (7642), 456 (2017).

    Article  ADS  Google Scholar 

  31. M. N. Günther, Z. Zhan, S. Seager, et al., Astron. J. 159 (2), 60 (2020).

  32. W. F. Huebner, J. J. Keady, and S. P. Lyon, Astrophys. and Space Sci. 195 (1), 1 (1992).

    Article  ADS  Google Scholar 

  33. D. E. Ionov, Y. N. Pavlyuchenkov, and V. I. Shematovich, Monthly Notices Royal Astron. Soc. 476 (4), 5639 (2018).

    Article  ADS  Google Scholar 

  34. D. E. Ionov, V. I. Shematovich, and Y. N. Pavlyuchenkov, Astronomy Reports 61 (5), 387 (2017).

    Article  ADS  Google Scholar 

  35. S. **, C. Mordasini, V. Parmentier, et al., Astrophys. J. 795 (1), 65 (2014).

    Article  ADS  Google Scholar 

  36. R. E. Johnson, M. R. Combi, J. L. Fox, et al., Space Sci. Rev. 139 (1–4), 355 (2008).

    Article  ADS  Google Scholar 

  37. S. R. Kane, M. L. Hill, J. F. Kasting, et al., Astrophys. J. 830 (1), 1 (2016).

    Article  ADS  Google Scholar 

  38. J. F. Kasting, D. P. Whitmire, and R. T. Reynolds, Icarus 101 (1), 108 (1993).

    Article  ADS  Google Scholar 

  39. E. Kilpua, H. E. J. Koskinen, and T. I. Pulkkinen, Living Reviews in Solar Physics 14 (1), id. 5 (2017).

  40. G. W. King, P. J. Wheatley, V. Bourrier, and D. Ehrenreich, Monthly Notices Royal Astron. Soc. 484 (1), L49 (2019).

    Article  ADS  Google Scholar 

  41. R. K. Kopparapu, R. Ramirez, J. F. Kasting, et al., Astrophys. J. 765 (2), 131 (2013).

    Article  ADS  Google Scholar 

  42. R. K. Kopparapu, R. M. Ramirez, J. Schottel Kotte, et al., Astrophys. J. 787 (2), L29 (2014).

    Article  ADS  Google Scholar 

  43. J. R. Kulow, K. France, J. Linsky, and R. O. P. Loyd, Astrophys. J. 786 (2), 132 (2014).

    Article  ADS  Google Scholar 

  44. H. Kurokawa and L. Kaltenegger, Monthly Notices Royal Astron. Soc. 433 (4), 3239 (2013).

    Article  ADS  Google Scholar 

  45. H. Kurokawa and T. Nakamoto, Astrophys. J. 783 (1), 54 (2014).

    Article  ADS  Google Scholar 

  46. H. Lammer, Origin and Evolution of Planetary Atmospheres: Implications for Habitability (Springer, 2013).

    Book  Google Scholar 

  47. H. Lammer, J. H. Bredehöft, A. Coustenis, et al., Astron. Astrophys. Rev. 17 (2), 181 (2009a).

    Article  ADS  Google Scholar 

  48. H. Lammer, P. Odert,M. Leitzinger, et al., Astron. and Astrophys. 506 (1), 399 (2009b).

    Article  ADS  Google Scholar 

  49. H. Lammer, F. Selsis, I. Ribas, et al., Astrophys. J. 598 (2), L121 (2003).

    Article  ADS  Google Scholar 

  50. M. Leitzinger, P. Odert, R. Greimel, et al., Monthly Notices Royal Astron. Soc. 493 (3), 4570 (2020).

    Article  ADS  Google Scholar 

  51. J. J. Lissauer, D. Jontof-Hutter, J. F. Rowe, et al., Astrophys. J. 770 (2), 131 (2013).

    Article  ADS  Google Scholar 

  52. E. D. Lopez and J. J. Fortney, Astrophys. J. 776 (1), 2 (2013).

    Article  ADS  Google Scholar 

  53. E. D. Lopez and J. J. Fortney, Astrophys. J. 792 (1), 1 (2014).

    Article  ADS  Google Scholar 

  54. E. D. Lopez, J. J. Fortney, and N. Miller, Astrophys. J. 761 (1), 59 (2012).

    Article  ADS  Google Scholar 

  55. R. Luger and R. Barnes, Astrobiology 15 (2), 119 (2015).

    Article  ADS  Google Scholar 

  56. R. Luger, R. Barnes, E. Lopez, et al., Astrobiology 15 (1), 57 (2015).

    Article  ADS  Google Scholar 

  57. H. Maehara, T. Shibayama, S. Notsu, et al., Nature 485 (7399), 478 (2012).

    Article  ADS  Google Scholar 

  58. M. Y. Marov, V. I. Shematovich, and D. V. Bisicalo, Space Sci. Rev. 76 (1–2), 1 (1996).

    Article  ADS  Google Scholar 

  59. H.Massol, K. Hamano, F. Tian, et al., Space Sci. Rev. 205 (1–4), 153 (2016).

    Article  ADS  Google Scholar 

  60. T. Matsakos and A. Königl, Astrophys. J. 820 (1), L8 (2016).

    Article  ADS  Google Scholar 

  61. A. W. Mayo, A. Vanderburg, D. W. Latham, et al., Astron. J. 155 (3), 136 (2018).

    Article  ADS  Google Scholar 

  62. T. Mazeh, T. Holczer, and S. Faigler, Astron. and Astrophys. 589, id. A75 (2016).

  63. A.McQuillan, T.Mazeh, and S. Aigrain, Astrophys. J. 775 (1), L11 (2013).

    Article  ADS  Google Scholar 

  64. C. Mordasini, P. Mollière, K.M. Dittkrist, et al., Int. J. Astrobiology 14 (2), 201 (2015).

    Article  ADS  Google Scholar 

  65. T. D. Morton, S. T. Bryson, J. L. Coughlin, et al., Astrophys. J. 822 (2), 86 (2016).

    Article  ADS  Google Scholar 

  66. L. Noack, D. Höning, A. Rivoldini, et al., Icarus 277, 215 (2016).

    Article  ADS  Google Scholar 

  67. J. E. Owen, Ann. Rev. Earth and Planetary Sciences 47, 67 (2019).

    Article  ADS  Google Scholar 

  68. J. E. Owen and Y. Wu, Astrophys. J. 775 (2), 105 (2013).

    Article  ADS  Google Scholar 

  69. J. E. Owen and Y. Wu, Astrophys. J. 847 (1), 29 (2017).

    Article  ADS  Google Scholar 

  70. J. E. Owen, I. F. Shaikhislamov, H. Lammer, et al., Space Sci. Rev. 216 (8), 129 (2020).

    Article  ADS  Google Scholar 

  71. S.-J. Paardekooper and A. Johansen, Space Sci. Rev. 214 (1), 38 (2018).

    Article  ADS  Google Scholar 

  72. T. Penz, G. Micela, and H. Lammer, Astron. and Astrophys. 477 (1), 309 (2008).

    Article  ADS  Google Scholar 

  73. S. Ranjan, R.Wordsworth, and D. D. Sasselov, Astrophys. J. 843 (2), 110 (2017).

    Article  ADS  Google Scholar 

  74. I. Ribas, E. Bolmont, F. Selsis, et al., Astron. and Astrophys. 596, id. A111 (2016).

  75. I. Ribas, E. F. Guinan, M. Güdel, and M. Audard, Astrophys. J. 622 (1), 680 (2005).

    Article  ADS  Google Scholar 

  76. A. C. Rizzuto, A. W. Mann, A. Vanderburg, et al., Astron. J. 154 (6), 224 (2017).

    Article  ADS  Google Scholar 

  77. J. Sanz-Forcada, G. Micela, I. Ribas, et al., Astron. and Astrophys. 532, id. A6 (2011).

  78. I. S. Savanov, Astronomy Reports 55 (4), 341 (2011).

    Article  ADS  Google Scholar 

  79. I. Savanov, in Proc. All-Russian Conf. on Ground-Based Astronomy in Russia. 21st Century, Nizhny Arkhyz, Russia, 2020, Ed. by I. I. Romanyuk, I. A. Yakunin, A. F. Valeev, and D. O. Kudryavtsev, (Spec. Astrophys. Obs. Russian Acad. Sci., Nizhnij Arkhyz, 2020a), pp. 236–237.

  80. I. S. Savanov, Astronomy Letters 46 (12), 831 (2020b).

    Article  ADS  Google Scholar 

  81. I. S. Savanov, Astronomy Letters 47 (3), 175 (2021a).

    Article  ADS  Google Scholar 

  82. I. S. Savanov, Astrophysics 64 (2), 178 (2021b).

    Article  ADS  Google Scholar 

  83. I. S. Savanov, Astrophysical Bulletin 76 (2), 157 (2021c).

    Article  ADS  Google Scholar 

  84. I. S. Savanov and E. S. Dmitrienko, Astrophysical Bulletin 55 (10), 890 (2011).

    Google Scholar 

  85. I. S. Savanov and E. S. Dmitrienko, Astronomy Reports 59 (5), 397 (2015).

    Article  ADS  Google Scholar 

  86. I. S. Savanov and E. S. Dmitrienko, Astronomy Reports 63 (7), 595 (2019).

    Article  ADS  Google Scholar 

  87. I. S. Savanov and E. S. Dmitrienko, Astronomy Letters 46 (3), 177 (2020a).

    Article  ADS  Google Scholar 

  88. I. S. Savanov and E. S. Dmitrienko, INASAN Science Reports 5, 17 (2020b).

    ADS  Google Scholar 

  89. I. S. Savanov and E. S. Dmitrienko, INASAN Science Reports 5, 272 (2020c).

    ADS  Google Scholar 

  90. I. S. Savanov, E. S. Dmitrienko, S. Karmakar, and J. C. Pandey, Astronomy Reports 62 (8), 532 (2018a).

    Article  ADS  Google Scholar 

  91. I. S. Savanov, E. S. Kalinicheva, and E. S. Dmitrienko, Astronomy Reports 62 (5), 352 (2018b).

    Article  ADS  Google Scholar 

  92. J. Scalo, L. Kaltenegger, A. G. Segura, et al., Astrobiology 7 (1), 85 (2007).

    Article  ADS  Google Scholar 

  93. K. Schrijver, F. Bagenal, T. Bastian, et al., ar**v e‑prints ar**v:1910.14022 (2019).

  94. S. Seager and W. Bains, Science Advances 1 (2), e1500047 (2015).

    Article  ADS  Google Scholar 

  95. V. I. Shematovich, Solar System Research 44 (2), 96 (2010).

    Article  ADS  Google Scholar 

  96. V. I. Shematovich, Russian Chemical Reviews 88 (10), 1013 (2019).

    Article  ADS  Google Scholar 

  97. V. I. Shematovich, in Proc. All-Russian Conf. on Ground-Based Astronomy in Russia. 21st Century, Nizhny Arkhyz, Russia, 2020, Ed. by I. I. Romanyuk, I. A. Yakunin, A. F. Valeev, and D. O. Kudryavtsev, (Spec. Astrophys. Obs. Russian Acad. Sci., Nizhnij Arkhyz, 2020), pp. 224–230.

  98. V. I. Shematovich and D.V. Bisikalo, Oxford Research Encyclopedia of Planetary Science, Ed. by P. Read, et al. (Oxford Univ. Press, 2017), id. 104.

  99. V. I. Shematovich, D. V. Bisikalo, C. Diéval, et al., J. Geophysical Research (Space Physics) 116 (A11), A11320 (2011).

    ADS  Google Scholar 

  100. V. I. Shematovich, D. V. Bisikalo, J. C. Gérard, et al., J. Geophysical Research (Planets) 113 (E2), E02011 (2008).

    ADS  Google Scholar 

  101. V. I. Shematovich, D. V. Bisikalo, J. C. Gérard, and B. Hubert, Astronomy Reports 63 (10), 835 (2019).

    Article  ADS  Google Scholar 

  102. V. I. Shematovich, D. V. Bisikalo, and D. E. Ionov, Astrophysics and Space Science Library, 411, p. 105 (2015).

    Article  ADS  Google Scholar 

  103. V. I. Shematovich, D. V. Bisikalo, and A. G. Zhilkin, Astronomy Reports 65 (3), 203 (2021).

    Article  ADS  Google Scholar 

  104. V. I. Shematovich, D. E. Ionov, and H. Lammer, Astron. and Astrophys. 571, id. A94 (2014).

  105. V. I. Shematovich and M. Y. Marov, Physics Uspekhi 61 (3), 217 (2018).

  106. A. L. Shields, S. Ballard, and J. A. Johnson, Physics Reports 663, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  107. L. Sproß, M. Scherf, V. I. Shematovich, et al., Astronomy Reports 65 (4), 275 (2021).

    Article  ADS  Google Scholar 

  108. B. Stelzer, A. Marino, G. Micela, et al., Monthly Notices Royal Astron. Soc. 431 (3), 2063 (2013).

    Article  ADS  Google Scholar 

  109. F. Tian, Astrophys. J. 703 (1), 905 (2009).

    Article  ADS  Google Scholar 

  110. F. Tian, Ann. Rev. of Earth and Planetary Sciences 43, 459 (2015a).

    Article  ADS  Google Scholar 

  111. F. Tian, Icarus 258, 50 (2015b).

  112. F. Tian and S. Ida, Nature Geoscience 8 (3), 177 (2015).

  113. Z.-L. Tu, M. Yang, H. F. Wang, and F. Y. Wang, Astrophys. J. Suppl. 253 (2), 35 (2021).

    Article  ADS  Google Scholar 

  114. Z.-L. Tu, M. Yang, Z. J. Zhang, and F. Y. Wang, Astrophys. J. 890 (1), 46 (2020).

    Article  ADS  Google Scholar 

  115. T. Van Doorsselaere, H. Shariati, and J. Debosscher, Astrophys. J. Suppl. 232 (2), 26 (2017).

    Article  ADS  Google Scholar 

  116. V. Van Eylen, C. Agentoft, M. S. Lundkvist, et al., Monthly Notices Royal Astron. Soc. 479 (4), 4786 (2018).

    Article  ADS  Google Scholar 

  117. K. Vida, L. Kriskovics, K. Oláh, et al., Astron. and Astrophys. 590, id. A11 (2016).

  118. K. Vida, M. Leitzinger, L. Kriskovics, et al., Astron. and Astrophys. 623, id. A49 (2019).

  119. A. Vidal-Madjar, A. Lecavelier des Etangs, J. M. Désert, et al., Nature 422 (6928), 143 (2003).

    Article  ADS  Google Scholar 

  120. H. Yang and J. Liu, Astrophys. J. Suppl. 241 (2), 29 (2019).

    Article  ADS  Google Scholar 

  121. R. Yelle, H. Lammer, and W.-H. Ip, Space Sci. Rev. 139 (1–4), 437 (2008).

    Article  ADS  Google Scholar 

  122. A. Youngblood, K. France, R. O. P. Loyd, et al., Astrophys. J. 824 (2), 101 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

The authors are grateful to the Government of the Russian Federation and the Ministry of Higher Education and Science of the Russian Federation for grant support no. 075-15-2020-780 (no. 13.1902.21.0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Savanov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savanov, I.S., Shematovich, V.I. The Activity of Stars with Planetary Systems and Its Impact on the Loss of Atmosphere by Hot Exoplanets. Astrophys. Bull. 76, 450–471 (2021). https://doi.org/10.1134/S199034132104012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034132104012X

Keywords:

Navigation