Log in

Analysis of Integrated-Light Spectra of Galactic Globular Clusters

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We present the results of determination of the age, helium mass fraction (Y), metallicity ([Fe/H]), and abundances of the elements C, O, Na, Mg, Ca, Ti, Cr and Mn for 26 globular clusters of the Galaxy. In this work, we apply a method developed by us that employs medium-resolution integrated-light spectra of globular clusters and models of stellar atmospheres and it is supplemented in this paper by the automatic calculation of microturbulence velocities of stars in the studied objects. Based on the data obtained for 26 objects, as well as the results of our previous studies, it is shown that the abundances of chemical elements that we measured, with the exception of carbon, are consistent with the literature estimates from the analysis of integrated-light spectra of clusters and from high-resolution spectroscopic observations of their brightest stars. Our estimates of [C/Fe] are consistent with the literature values obtained from the integrated-light spectra of clusters. We interpret the systematic difference between the derived [C/Fe] for globular clusters and the literature [C/Fe] values for the brightest stars of the clusters as a change of the chemical composition in the atmospheres of stars during their evolution. The estimated absolute ages and average Y for the clusters are in a reasonable agreement with the literature data from the analysis of color–magnitude diagrams of the objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. The line Hϵ contributes to the H Ca II line.

  2. ftp://ftp.sao.ru/pub/sme/AnalILMWGCs/.

  3. ftp://ftp.sao.ru/pub/sme/AnalILMWGCs/NGC1851_2298_ 2808_3201.pdf.

  4. ftp://ftp.sao.ru/pub/sme/AnalILMWGCs/NGC6638_6652_ 6723_6205_7006.pdf.

  5. ftp://ftp.sao.ru/pub/sme/AnalILMWGCs/NGC5946_5986_ 6171_6218.pdf.

  6. ftp://ftp.sao.ru/pub/sme/AnalILMWGCs/NGC1851_2298_ 2808_3201.pdf.

REFERENCES

  1. G. Bertelli, L. Girardi, P. Marigo, and E. Nasi, Astron. and Astrophys. 484 (3), 815 (2008).

    ADS  Google Scholar 

  2. E. Bica, S. Ortolani, and B. Barbuy, Publ. Astron. Soc. Australia 33, e028 (2016).

    ADS  Google Scholar 

  3. C. Boeche and E. K. Grebel, Astron. and Astrophys. 587, A2 (2016).

    Google Scholar 

  4. C. Boeche, A. Siebert, M. Williams, et al., Astron. J. 142 (6), 193 (2011).

    ADS  Google Scholar 

  5. K. Brogaard, D. A. VandenBerg, L. R. Bedin, et al., Monthly Notices Royal Astron. Soc. 468 (1), 645 (2017).

    ADS  Google Scholar 

  6. H. Bruntt, S. Basu, B. Smalley, et al., Monthly Notices Royal Astron. Soc. 423 (1), 122 (2012).

    ADS  Google Scholar 

  7. I. Cabrera-Ziri, C. Lardo, and A. Mucciarelli, Monthly Notices Royal Astron. Soc. 485 (3), 4128 (2019).

    ADS  Google Scholar 

  8. A. Calamida, K. C. Sahu, S. Casertano, et al., Astrophys. J. 810 (1), 8 (2015).

    ADS  Google Scholar 

  9. B. W. Carney, Star Clusters, Saas-Fee Advanced Courses, Vol. 28: Stellar Evolution in Globular Clusters (Springer-Verlag, Berlin, Heidelberg, 2001) p. 1.

  10. E. Carretta, A. Bragaglia, R. G. Gratton, et al., Astron. and Astrophys. 516, A55 (2010).

    Google Scholar 

  11. F. Castelli and R. L. Kurucz, IAU Symp. 210, A20 (2003).

  12. B. Chaboyer, A. Sarajedini, and T. E. Armandro ff, Astron. J. 120 (6), 3102 (2000).

    ADS  Google Scholar 

  13. G. Chabrier, Astrophys. Space Sci. Library 327, 41 (2005).

    ADS  Google Scholar 

  14. C. Charbonnel, EAS Publ. Ser. 80–81, pp. 177– 226 (2016).

    Google Scholar 

  15. J. E. Colucci, R. A. Bernstein, and A. McWilliam, Astrophys. J. 834 (2), 105 (2017).

    ADS  Google Scholar 

  16. C. Conroy, A. Villaume, P. G. van Dokkum, and K. Lind, Astrophys. J. 854 (2), 139 (2018).

    ADS  Google Scholar 

  17. P. A. Denissenkov, D. A. VandenBerg, G. Kopacki, and J. W. Ferguson, Astrophys. J. 849 (2), 159 (2017).

    ADS  Google Scholar 

  18. A. Dotter, A. Sarajedini, J. Anderson, et al., Astrophys. J. 708 (1), 698 (2010).

    ADS  Google Scholar 

  19. D. A. Forbes and T. Bridges, Monthly Notices Royal Astron. Soc. 404 (3), 1203 (2010).

    ADS  Google Scholar 

  20. G. A. Galazutdinov, V. V. Shimansky, A. Bondar, et al., Monthly Notices Royal Astron. Soc. 465 (4), 3956 (2017).

    ADS  Google Scholar 

  21. R. G. Gratton, E. Carretta, and A. Bragaglia, Astron. and Astrophys. 20, 50 (2012).

    Google Scholar 

  22. B. M. S. Hansen, J. S. Kalirai, J. Anderson, et al., Nature 500 (7460), 51 (2013).

    ADS  Google Scholar 

  23. W. E. Harris, Astron. J. 112, 1487 (1996).

    ADS  Google Scholar 

  24. C. I. Johnson, N. Caldwell, R. M. Rich, et al., Astrophys. J. 842 (1), 24 (2017).

    ADS  Google Scholar 

  25. F. Kahraman Aliçavuş, E. Niemczura, P. De Cat, et al., Monthly Notices Royal Astron. Soc.¸ 458 (3), 2307 (2016).

  26. D. A. Khamidullina, M. E. Sharina, V. V. Shimansky, and E. Davoust, Astrophysical Bulletin 69 (4), 409 (2014).

    ADS  Google Scholar 

  27. C. Kobayashi, H. Umeda, K. Nomoto, et al., Astrophys. J. 653 (2), 1145 (2006).

    ADS  Google Scholar 

  28. R. P. Kraft, Publ. Astron. Soc. Pacific 106, 553 (1994).

  29. P. Kroupa, C. A. Tout, and G. Gilmore, Monthly Notices Royal Astron. Soc. 262, 545 (1993).

    ADS  Google Scholar 

  30. J. M. D. Kruijssen, J. L. Pfe ff er, M. Reina-Campos, et al., Monthly Notices Royal Astron. Soc. 486 (3), 3180 (2019).

    ADS  Google Scholar 

  31. S. S. Larsen, J. P. Brodie, and J. Strader, Astron. and Astrophys. 546, A53 (2012).

    ADS  Google Scholar 

  32. S. S. Larsen, J. P. Brodie, and J. Strader, Astron. and Astrophys. 601, A96 (2017).

    ADS  Google Scholar 

  33. L. Malavolta, C. Sneden, G. Piotto, et al., Astron. J. 147 (2), 25 (2014).

    ADS  Google Scholar 

  34. A. F. Marino, S. Villanova, G. Piotto, et al., Astron. and Astrophys. 490 (2), 625 (2008).

    ADS  Google Scholar 

  35. V. A. Marsakov, V. V. Koval’, and M. L. Gozha, Astrophysical Bulletin 74 (4), 403 (2019).

    ADS  Google Scholar 

  36. D. Massari, A. Mucciarelli, E. Dalessandro, et al., Monthly Notices Royal Astron. Soc. 468 (1), 1249 (2017).

    ADS  Google Scholar 

  37. F. Matteucci, V. Grisoni, E. Spitoni, et al., Monthly Notices Royal Astron. Soc. 487 (4), 5363 (2019).

    ADS  Google Scholar 

  38. A. McWilliam and R. A. Bernstein, Astrophys. J. 684 (1), 326 (2008).

    ADS  Google Scholar 

  39. V. S. Menzhevitski, N. N. Shimanskaya, V. V. Shimansky, and D. O. Kudryavtsev, Astrophysical Bulletin 69 (2), 169 (2014).

    ADS  Google Scholar 

  40. S. Meszáros, S. L. Martell, M. Shetrone, et al., Astron. J. 149 (5), 153 (2015).

  41. T. V. Mishenina, V. E. Panchuk, and N. N. Samus’, Astronomy Reports 47 (3), 248 (2003).

    ADS  Google Scholar 

  42. P. E. Nissen, Astron. and Astrophys. 97, 145 (1981).

    ADS  Google Scholar 

  43. A. Pietrinferni, S. Cassisi, M. Salaris, and S. Hidalgo, Astron. and Astrophys. 558, A46 (2013).

    ADS  Google Scholar 

  44. G. Piotto, I. R. King, S. G. Djorgovski, et al., Astron. and Astrophys. 391, 945 (2002).

    ADS  Google Scholar 

  45. B. J. Pritzl, K. A. Venn, and M. Irwin, Astron. J. 130 (5), 2140 (2005).

    ADS  Google Scholar 

  46. J. C. Roediger, S. Courteau, G. Graves, and R. P. Schiavon, Astrophys. J. Suppl. 210 (1), 10 (2014).

    ADS  Google Scholar 

  47. E. E. Salpeter, Astrophys. J. 121, 161 (1955).

    ADS  Google Scholar 

  48. N. C. Santos, S. G. Sousa, A. Mortier, et al., Astron. and Astrophys. 556, A150 (2013).

    Google Scholar 

  49. A. Sarajedini, L. R. Bedin, B. Chaboyer, et al., Astron. J. 133 (4), 1658 (2007).

    ADS  Google Scholar 

  50. M. Schaeuble, G. Preston, C. Sneden, et al., Astron. J. 149 (6), 204 (2015).

    ADS  Google Scholar 

  51. R. P. Schiavon, J. A. Rose, S. Courteau, and L. A. MacArthur, Astrophys. J. Suppl. 160 (1), 163 (2005).

    ADS  Google Scholar 

  52. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500 (2), 525 (1998).

    ADS  Google Scholar 

  53. M. E. Sharina, C. J. Donzelli, E. Davoust, et al., Astron. and Astrophys. 570, A48 (2014).

    Google Scholar 

  54. M. E. Sharina and V. V. Shimansky, IAU Symp. 351, pp. 165–169 (2020).

  55. M. E. Sharina, V. V. Shimansky, and E. Davoust, Astronomy Reports 57 (6), 410 (2013).

    ADS  Google Scholar 

  56. M. E. Sharina, V. V. Shimansky, and D. A. Khamidullina, Astrophysical Bulletin 73 (3), 318 (2018).

    ADS  Google Scholar 

  57. M. E. Sharina, V. V. Shimansky, and A. Y. Kniazev, Monthly Notices Royal Astron. Soc. 471 (2), 1955 (2017).

    ADS  Google Scholar 

  58. M. E. Sharina and V. V. Shimansky, ar**v:2004.05957 (2020).

  59. J. D. Simpson, S. L. Martell, and C. A. Navin, Monthly Notices Royal Astron. Soc. 465 (1), 1123 (2017).

    ADS  Google Scholar 

  60. V. Testa, C. E. Corsi, G. Andreuzzi, et al., Astron. J. 121 (2), 916 (2001).

    ADS  Google Scholar 

  61. D. A. VandenBerg, K. Brogaard, R. Leaman, and L. Casagrande, Astrophys. J. 775 (2), 134 (2013).

    ADS  Google Scholar 

  62. D. Yong, A. Alves Brito, G. S. Da Costa, et al., Monthly Notices Royal Astron. Soc. 439 (3), 2638 (2014).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the anonymous referee for the comments that allowed us to improve the paper. We thank A.I. Kolbin for help in preparing the figures in Section 3.1 of the article.

Funding

The work was supported by the grant RFBR 18-02-00167. Sh.N.N. appreciates the grant RFBR 18-42-160003. Observations with the 6th telescope are supported by funding from the Ministry of Education and Science of the Russian Federation (Agreement No. 14.619.21.0004, project RFMEFI61914X0004). The work of Sh.V.V. was partially funded by the subsidy No. 0671-2020-0052 to KFU for the scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Sharina.

Ethics declarations

The authors declare no conflict of interest regarding this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharina, M.E., Shimansky, V.V. & Shimanskaya, N.N. Analysis of Integrated-Light Spectra of Galactic Globular Clusters. Astrophys. Bull. 75, 247–266 (2020). https://doi.org/10.1134/S1990341320030116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341320030116

Keywords:

Navigation