Log in

Mathematical model of orbital and ground-based cross-dispersion spectrographs

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We present the technique and algorithm of numerical modeling of high-resolution spectroscopic equipment. The software is implemented in C++ using nVidia CUDA technology. We report the results of currently developedmodeling of new-generation echelle spectrographs. To validate the algorithms used to construct the mathematical model, we present the results of modeling of NES spectrograph of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. A comparison of simulated and real images of the spectra acquired with NES spectrograph demonstrates good agreement between the model constructed and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hasan and C. J. Burrows, in Calibrating Hubble Space Telescope, Ed. by J. C. Blades and S. J. Osmer (Space Telescope Science Institute, Baltimore, 1994), p. 395.

  2. F. Diego and D. D. Walker, Monthly Notices Royal Astron. Soc. 217, 347 (1985).

    Article  ADS  Google Scholar 

  3. D. D. Walker and F. Diego, Monthly Notices Royal Astron. Soc. 217, 355 (1985).

    Article  ADS  Google Scholar 

  4. J. A. Valenti, R. P. Butler, and G. W. Marcy, Publ. Astron. Soc. Pacific 107, 966 (1995).

    Article  ADS  Google Scholar 

  5. D. Queloz, IAU Symp. 167, 221 (1995).

    ADS  Google Scholar 

  6. P. Ballester and M. R. Rosa, Astron. and Astrophys. Suppl. 126 (1997).

  7. J. Krist, ASP Conf. Ser. 77, 349 (1995).

    ADS  Google Scholar 

  8. P. Ghavamian, A. Aloisi, D. Lennon, et al., COS Instrument Sci. rep. 2009-01 (2009).

  9. G. H. Spencer and M. V. R. K. Murty, J. Opt. Soc. America 52, 672 (1962).

    Article  ADS  Google Scholar 

  10. C. Palmer, Diffraction grating handbook, 5th ed. (Thermo RGL, New York, 2002).

    Google Scholar 

  11. K. I. Tarasov, Spectral Devices (Mashinostroenie, Moscow, 1977)[In Russian].

    Google Scholar 

  12. A. N. Zaydel, G. V. Ostrovskaya, and Yu. I. Ostrovskii, Methods and practice of spectroscopy (Nauka, Moscow, 1972) [In Russian].

    Google Scholar 

  13. A. A. Boyarchuk, B. M. Shustov, A. A. Moisheev, and M. E. Sachkov, Solar System Research 47, 499 (2013).

    Article  ADS  Google Scholar 

  14. V. Panchuk, M. Yushkin, T. Fatkhullin, and M. Sachkov, Astrophys. Space Sci. 354, 163 (2014).

    Article  ADS  Google Scholar 

  15. D. J. Schroeder and R. L. Hilliard, Appl.Opt. 19, 2833 (1980).

    Article  ADS  Google Scholar 

  16. V. E. Panchuk, V. G. Klochkova, M. V. Yushkin, and I. D. Najdenov, J. Opt. Technol. 76, 87 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Yushkin.

Additional information

Original Russian Text © M.V. Yushkin, T.A. Fatkhullin, V.E. Panchuk, 2016, published in Astrofizicheskii Byulleten’, 2016, Vol. 71, No. 3, pp. 372–385.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkin, M.V., Fatkhullin, T.A. & Panchuk, V.E. Mathematical model of orbital and ground-based cross-dispersion spectrographs. Astrophys. Bull. 71, 343–356 (2016). https://doi.org/10.1134/S1990341316030081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341316030081

Keywords

Navigation