Log in

Study of auto- and heteroreceptor components of the presynaptic dopamine reuptake modulation in the mechanism of the in vitro action of the novel antiparkinsonian drug hemantane

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

The effect of Hemantane, a new 2-aminoadamantane derivative (N-adamant-2-ylhexamethylenimine hydrochloride) with antiparkinsonian activity on [3H]-dopamine ([3H]-DA) uptake and binding by D1, D2, and D3 dopamine and NMDA glutamate receptors was studied in comparison with the clinically used drug Amantadine. The method of radioligand binding to rat striatal membrane preparations was used. Both drugs, when used within a concentration range of 10−11 to 10−3 M did not affect the[G-3H]-SCH23390 and [G-3H]-Spiperone binding by D1 and D2 receptors. However, at micromolar concentrations (>10−5 M), Hemantane and Amantadine inhibited the binding of the D3 receptor ligand 7-OH-[G-3H]-DPAT with IC50 values of 39 and 360 μM, respectively; i.e., Hemantane is almost one order of magnitude more efficient. Both preparations exhibited a similar effect on NMDA receptors: the semiinhibition constants IC50 were 5.5 μM for Hemantane and 4 μM for Amantadine. Hemantane and Amantadine were shown to reproducibly inhibit the reuptake of [3H]-dopamine at concentrations of 100–500 μM. The study of inhibition kinetics demonstrated the noncompetitive character of the action: Hemantane decreased the B max value from 9.0 (control) to 5.1 pmol of [3H]-DA per min/mg of protein (p < 0.05), whereas K m value remained constant (0.5 μM), which is characteristic of the noncompetitive type of inhibition. The (±)CPP and MK-801 antagonists of NMDA receptors inhibited the reuptake of [3H]-DA with IC50 of 6 and 38 μM, respectively; NMDA (1, 10, and 100 μM) had no effect; and quisqualate, an agonist of nonNMDA receptors, moderately (−37%, p < 0.05) inhibited dopamine transport at 100 μM. These data seem to indicate that the mechanism of increase of dopaminergic transfer under the action of adamantane derivatives could involve noncompetitive inhibition of dopamine transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DA:

dopamine

References

  1. Carlsson, A. and Waldeck, D., Acta Physiol. Scand., 1958, vol. 44, no. 3/4, pp. 293–298.

    Article  PubMed  CAS  Google Scholar 

  2. Hornykiewicz, O., The Neurobiology of Dopamine, London: Academic, 1979, pp. 633–654.

    Google Scholar 

  3. Danysz, W., Parsons, C., et al., Neurosci. Biobehav., 1997, vol. 21, no. 4, pp. 455–468.

    Article  CAS  Google Scholar 

  4. Morozov, I.S., Petrov V.I., and Sergeeva, S.A., Farmakologiya adamantanov (Pharmacology of Adamantanes), Volgograd, 2001.

  5. Ebadi, M., Srinivasan, S., and Baxi, M., Prog. Neurobiol., 1996, vol. 48, no. 1, pp. 1–19.

    Article  PubMed  CAS  Google Scholar 

  6. Nerobkova, L.N., Val’dman, E.A., Voronina, T.A., et al., Exper. Klinich. Farmacol., 2000, vol. 63, no. 3, pp. 3–6.

    CAS  Google Scholar 

  7. Andyarzhanova, E.A., Afanas’ev, I.I., Kudrin, V.S., et al., Abstracts of Papers, Actual’nye problemy exper. i klinich. farmacol. (Actual Problems of Experimental and Clinical Pharmacol.), St. Petersburg: Polytechnika, 1999, p 37.

    Google Scholar 

  8. Sobolevsky, A. and Yelshansky, M., J. Physiology, 2000, vol. 526, no. 3, pp. 493–506.

    Article  CAS  Google Scholar 

  9. Glowinski, J. and Iversen, L., J. Neurochem., 1966, vol. 13, no. 8, pp. 655–669.

    Article  PubMed  CAS  Google Scholar 

  10. Sun, W., Ginovart, N., Seeman, P., et al., Mol. Pharmacol., 2003, vol. 63, no. 2, pp. 456–462.

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez, M., Obeso, J., and Olanow, C., Beyond the Decade of the Brain. Neuroprotection in Parkinson’s Disease, Kent: Wells, Medical Limited, 1998, vol. 3, pp. 345–365.

    Google Scholar 

  12. Nowak, G., Trullas, R., Layer, R., et al., J Pharmacol. Exp. Ther., 1993, vol. 265, pp. 1380–1386.

    PubMed  CAS  Google Scholar 

  13. Ruiu, U., Pignatelli, V., et al., Radiol. Med. (Torino), 1988, vol. 76, no. 6, pp. 647–649.

    CAS  Google Scholar 

  14. Cornish-Bowden, A., Principles of Enzyme Kinetics, London: Butterworth, 1976.

    Google Scholar 

  15. Lipton, S., Neuro. Rx, 2004, vol. 1, no. 1, pp. 101–110.

    Article  PubMed  Google Scholar 

  16. Aretha, C.W., Sinha, A., et al., J. Pharmacol. Exp. Ther., 1995, vol. 274, no. 2, pp. 609–613.

    PubMed  CAS  Google Scholar 

  17. Gobert, A., Rivet, J., et al., J. Pharmacol. Exp. Ther., 1995, vol. 275, no. 2, pp. 899–913.

    PubMed  CAS  Google Scholar 

  18. Koeltzow, T., Xu, M., et al., J. Neurosci., 1998, vol. 18, no. 6, pp. 2231–2238.

    PubMed  CAS  Google Scholar 

  19. Herblin, W.F., Biochem. Pharmacol., 1972, vol. 21, no. 14, pp. 1993–1995.

    Article  PubMed  CAS  Google Scholar 

  20. Morozov, I.S., Klimova, N.V., and Sergeeva, S.A., Vestnik RAMN, 1999, no. 3, pp. 28–32.

  21. Kovalev, G.I., Rodionov, A.P., Petrenko, E.S., and Zolotarev, Yu.A., Exp. Clin. Farmacol., 2003, no. 3, pp. 6–8.

  22. Page, G., Peeters, M., Najimiy, M., et al., J. Neurochem., 2001, vol. 76, pp. 1282–1290.

    Article  PubMed  CAS  Google Scholar 

  23. Levant, B., Pharmacol. Rev., 1997, vol. 49, no. 3, pp. 231–252.

    PubMed  CAS  Google Scholar 

  24. Joyce, J., Woolsey, C., et al., BMC Biol., 2004, vol. 2, pp. 2–22.

    Article  CAS  Google Scholar 

  25. Bardoni, R., Torsney, C., et al., J. Neurosci., 2004, vol. 24, no. 11, pp. 2774–2781.

    Article  PubMed  CAS  Google Scholar 

  26. Hornykiewicz, O., Mount Sinai J. Med., 1988, vol. 55, pp. 11–20.

    CAS  Google Scholar 

  27. Lowry, O. et al., J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Kovalev.

Additional information

Original Russian Text © G.I. Kovalev, D.A. Abaimov, M.V. Voronin, J.Yu. Firstova, O.V. Dolotov, 2007, published in Neirokhimiya, 2007, Vol. 24, No. 2, pp. 143–149.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalev, G.I., Abaimov, D.A., Voronin, M.V. et al. Study of auto- and heteroreceptor components of the presynaptic dopamine reuptake modulation in the mechanism of the in vitro action of the novel antiparkinsonian drug hemantane. Neurochem. J. 1, 253–259 (2007). https://doi.org/10.1134/S1819712407030142

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712407030142

Key words

Navigation