Log in

Uncertainty Quantification of Stochastic Epidemic SIR Models Using B-spline Polynomial Chaos

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Real-life epidemic situations are modeled using systems of differential equations (DEs) by considering deterministic parameters. However, in reality, the transmission parameters involved in such models experience a lot of variations and it is not possible to compute them exactly. In this paper, we apply B-spline wavelet-based generalized polynomial chaos (gPC) to analyze possible stochastic epidemic processes. A sensitivity analysis (SA) has been performed to investigate the behavior of randomness in a simple epidemic model. It has been analyzed that a linear B-spline wavelet basis shows accurate results by involving fewer polynomial chaos expansions (PCE) in comparison to cubic B-spline wavelets. We have carried out our developed method on two real outbreaks of diseases, firstly, influenza which affected the British boarding school for boys in North England in 1978, and secondly, Ebola in Liberia in 2014. Real data from the British Medical Journal (influenza) and World Health Organization (Ebola) has been incorporated into the Susceptible-Infected-Recovered (SIR) model. It has been observed that the numerical results obtained by the proposed method are quite satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kermack, W. O. and McKendrick, A. G., Contributions to the Mathematical Theory of Epidemics, Proc. Roy. Soc. Edinburgh Sect. A , 1927, vol. 115, no. 772, pp. 700–721.

    MATH  Google Scholar 

  2. Bartlett, M. S., Some Evolutionary Stochastic Processes, J. R. Stat. Soc. B , 1949, vol. 11, no. 2, pp. 211–229.

    MathSciNet  MATH  Google Scholar 

  3. Kendall, D. G., Deterministic and Stochastic Epidemics in Closed Populations, in Proc. of the 3rd Berkeley Symp. on Mathematical Statistics and Probability, 1954 – 1955 : Vol. 4, Berkeley, Calif.: Univ. of California Press, 1956, pp. 149–165.

    Google Scholar 

  4. Hethcote, H. W., The Mathematics of Infectious Diseases, SIAM Rev. , 2000, vol. 42, no. 4, pp. 599–653.

    Article  MathSciNet  Google Scholar 

  5. Cunha, A., Jr., Nasser, R., Sampaio, R., Lopes, H., and Breitman, K., Uncertainty Quantification through the Monte Carlo Method in a Cloud Computing Setting, Comput. Phys. Commun. , 2014, vol. 185, pp. 1355–1363.

    Article  Google Scholar 

  6. Walters, R. W. and Huyse, L., Uncertainty Analysis for Fluid Mechanics with Applications, NASA Report CR-2002-211449, ICASE (2002), 50pp.

  7. Robert, C. P. and Casella, G., Monte Carlo Statistical Methods , 2nd ed., New York: Springer, 2004.

    Book  Google Scholar 

  8. Liu, J. S., Monte Carlo Strategies in Scientific Computing , New York: Springer, 2008.

    MATH  Google Scholar 

  9. Crestaux, T., Le Maître, O. P., and Martinez, J.-M., Polynomial Chaos Expansion for Sensitivity Analysis, Reliab. Eng. Syst. Saf. , 2009, vol. 94, no. 7, pp. 1161–1172.

    Article  Google Scholar 

  10. Sepahvand, K., Marburg, S., and Hardtke, H.-J., Uncertainty Quantification in Stochastic Systems Using Polynomial Chaos Expansion, Int. J. Appl. Mech. , 2010, vol. 2, no. 2, pp. 305–353.

    Article  Google Scholar 

  11. **u, D. and Karniadakis, G. E., The Wiener – Askey Polynomial Chaos for Stochastic Differential Equations, SIAM J. Sci. Comput. , 2002, vol. 24, no. 2, pp. 619–644.

    Article  MathSciNet  Google Scholar 

  12. **u, D. and Karniadakis, G. E., Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos, J. Comput. Phys. , 2003, vol. 187, no. 1, pp. 137–167.

    Article  MathSciNet  Google Scholar 

  13. Reagana, M. T., Najm, H. N., Ghanem, R. G., and Knio, O. M., Uncertainty Quantification in Reacting-Flow Simulations through Non-Intrusive Spectral Projection, Combust. Flame , 2003, vol. 132, no. 3, pp. 545–555.

    Article  Google Scholar 

  14. Le Maître, O. P., Knio, O. M., Najm, H. N., and Ghanem, R. G., Uncertainty Propagation Using Wiener – Haar Expansions, J. Comput. Phys. , 2004, vol. 197, no. 1, pp. 28–57.

    Article  MathSciNet  Google Scholar 

  15. Wiener, N., The Homogeneous Chaos, Amer. J. Math. , 1938, vol. 60, no. 4, pp. 897–936.

    Article  MathSciNet  Google Scholar 

  16. Gunzburger, M., Webster, C. G., and Zhang, G., An Adaptive Wavelet Stochastic Collocation Method for Irregular Solutions of Partial Differential Equations with Random Input Data, in Sparse Grids and Applications (Munich, 2012) , J. Garcke, D. Pflüger (Eds.), Lect. Notes Comput. Sci., vol. 97, Cham: Springer, 2014, pp. 137–170.

    Chapter  Google Scholar 

  17. Le Maître, O. P., Najm, H. N., Ghanem, R. G., and Knio, O. M., Multi-Resolution Analysis of Wiener-Type Uncertainty Propagation Schemes, J. Comput. Phys. , 2004, vol. 197, no. 2, pp. 502–531.

    Article  MathSciNet  Google Scholar 

  18. Kaur, N. and Goyal, K., Uncertainty Propagation Using Wiener-Linear B-Spline Wavelet Expansion, Comput. Math. Appl. , 2020, vol. 79, no. 9, pp. 2598–2623.

    Article  MathSciNet  Google Scholar 

  19. Kegan, B. and West, R. W., Modeling the Simple Epidemic with Deterministic Differential Equations and Random Initial Conditions, Math. Biosci. , 2005, vol. 195, no. 2, pp. 179–193.

    Article  MathSciNet  Google Scholar 

  20. Chen-Charpentier, B. M. and Stanescu, D., Epidemic Models with Random Coefficients, Math. Comput. Model. , 2010, vol. 52, nos. 7–8, pp. 1004–1010.

    Article  MathSciNet  Google Scholar 

  21. Santonja, F. and Chen-Charpentier, B. M., Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos, Comput. Math. Method. M. , 2012, vol. 2012, no. 3, pp. 449–461.

    MATH  Google Scholar 

  22. Roberts, M. G., Epidemic Models with Uncertainty in the Reproduction Number, J. Math. Biol. , 2013, vol. 66, no. 7, pp. 1463–1474.

    Article  MathSciNet  Google Scholar 

  23. Omar, A. H. A. and Hasan, Y. A., Numerical Simulations of an SIR Epidemic Model with Random Initial States, Sci. Asia , 2013, vol. 39, pp. 42–47.

    Article  Google Scholar 

  24. Harman, D. B. and Johnston, P. R., Applying the Stochastic Galerkin Method to Epidemic Models with Uncertainty in the Parameters, Math. Biosci. , 2016, vol. 277, pp. 25–37.

    Article  MathSciNet  Google Scholar 

  25. Goswami, J. C., Chan, A. K., and Chui, C. K., On Solving First-Kind Integral Equations Using Wavelets on a Bounded Interval, IEEE Trans. Antennas Propag. , 1995, vol. 43, no. 6, pp. 614–622.

    Article  MathSciNet  Google Scholar 

  26. Maleknejad, K., Mollapourasl, R., and Shahabi, M., On the Solution of a Nonlinear Integral Equation on the Basis of a Fixed Point Technique and Cubic B-Spline Scaling Functions, J. Comput. Appl. Math. , 2013, vol. 239, no. 1, pp. 346–358.

    Article  MathSciNet  Google Scholar 

  27. Maleknejad, K., Nouri, K., and Sahlan, M. N., Convergence of Approximate Solution of Nonlinear Fredholm – Hammerstein Integral Equations, Commun. Nonlinear Sci. Numer. Simul. , 2010, vol. 15, no. 6, pp. 1432–1443.

    Article  MathSciNet  Google Scholar 

  28. Murray, J. D., Mathematical Biology , 2nd ed., Biomath., vol. 19, Berlin: Springer, 1993.

    Book  Google Scholar 

  29. Center, C. D. S., News and Notes: Influenza in a Boarding School, The BMJ , 1978, vol. 1, no. 6112, pp. 586–590.

    Article  Google Scholar 

  30. Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M., Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , New York: Wiley, 2004.

    MATH  Google Scholar 

  31. Balaman, Ş. Y., Decision-Making for Biomass-Based Production Chains: The Basic Concepts and Methodologies , New York: Acad. Press, 2018.

    Google Scholar 

  32. Warder, S. C., Sensitivity Analysis, Uncertainty Quantification and Parameter Estimation for a Numerical Tide and Storm Surge Model, PhD Thesis , Imperial College, London, 2020, 189 pp.

  33. Appendix: Additional Results and Technical Notes for the Ebola Response Modeling Tool, Centers for Disease Control and Prevention, https://www.cdc.gov/mmwr/preview/mmwrhtml/su63e0923a2.htm (Sept 2014).

  34. Ebola Virus Disease Update: West Africa, The World Health Organization (WHO), https://www.who.int/csr/don/2014\_08\_19\_ebola/en/ (19 Aug 2014).

  35. Meltzer, M. I., Atkins, C.Y., Santibanez, S., Knust, B., Petersen, B.W., Ervin, E. D., Nichol, S. T., Damon, I. K., and Washington, M. L., Estimating the Future Number of Cases in the Ebola Epidemic: Liberia and Sierra Leone (2014–2015), Centers for Disease Control and Prevention, https://www.cdc.gov/mmwr/preview/mmwrhtml/su6303a1.htm (Sept 2014).

  36. WHO Finds 70 Percent Ebola Mortality Rate, The World Health Organization (WHO), https://www.aljazeera.com/news/2014/10/15/who-finds-70-percent-ebola-mortality-rate (2014).

  37. Suthanthirakumaran, M., Modelling Ebola Using an SIR Model , : North London Collegiate School, 2014.

    Google Scholar 

Download references

Funding

The second author is grateful to the Science and Engineering Research Board (SERB) for MTR/2017 /000619 grant in support of this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Navjot Kaur or Kavita Goyal.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

34F05, 60H10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Goyal, K. Uncertainty Quantification of Stochastic Epidemic SIR Models Using B-spline Polynomial Chaos. Regul. Chaot. Dyn. 26, 22–38 (2021). https://doi.org/10.1134/S1560354721010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354721010020

Keywords

Navigation