Log in

Effect of the Nature and Concentration of the Fuel on the Structure and Morphology of ZnO Microspheres Produced via Spray Solution Combustion Synthesis

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of ultradisperse spherical ZnO powders was accomplished by spray solution combustion, employing four distinct fuels, namely methenamine, glycine, urea, and citric acid. Using X-ray diffraction analysis, scanning electron microscopy, and low-temperature nitrogen adsorption, the impact of the main process parameters (composition and concentration of fuel, temperature and rate of the carrier gas flow) on the structure and morphology of ZnO particles was demonstrated. A synthesis temperature of 700°C was found to be sufficient to generate crystalline ZnO with a homogeneous phase composition, regardless of the type and amount of fuel. It was shown that the initial pH of the precursor solution does not affect the formation of the ZnO phase. At rates of carrier gas flow above 4 L min–1, the presence of by-products is detected. It has been determined that the excess and type of fuel significantly affect the morphology of the synthesized ZnO microspheres and can be used to control the technological characteristics of the powder and the kinetics of sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Klingshirn, C., Chem.Phys.Chem., 2007, vol. 8, no. 6, pp. 782–803. https://doi.org/10.1002/cphc.200700002

    Article  CAS  PubMed  Google Scholar 

  2. Ren, G., Lan, J., Zeng, C., Liu, Y., Zha, B., Butt, S., and Nan, C.W., JOM, 2015, vol. 67, pp. 211–221. https://doi.org/10.1007/s11837-014-1218-2

    Article  CAS  Google Scholar 

  3. Bugalia, A., Gupta, V., and Thakur, N., J. Renew. Sustain. Energy, 2023, vol. 15, ID 032704. https://doi.org/10.1063/5.0147000

    Article  CAS  Google Scholar 

  4. Prasad, R. and Bhame, S.D., Mater. Renew. Sustain. Energy, 2020, vol. 9, pp. 1–22. https://doi.org/10.1007/s40243-019-0163-y

    Article  Google Scholar 

  5. Kolodziejczak-Radzimska, A. and Jesionowski, T., Materials, 2014, vol. 7, pp. 2833–2881. https://doi.org/10.3390/ma7042833

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Prabhuraj, T., Prabhu, S., Dhandapani, E., Duraisamy, N., Ramesh, R., Kumar, K.R., and Maadeswaran, P., Diamond Relat. Mater., 2021, vol. 120, ID 108592. https://doi.org/10.1016/j.diamond.2021.108592

    Article  CAS  ADS  Google Scholar 

  7. **ng, Y., Zhang L., X., Chong, M.X., Yin Y., Y., Li, C.T., and Bie, L.J.., Sens. Actuators. B, 2022, vol. 369, ID 132356. https://doi.org/10.2139/ssrn.4009448

    Article  Google Scholar 

  8. Lee, Y., Fujimoto, T., and Yamanaka, S., Adv. Powder Technol., 2022, vol. 33, ID 103525. https://doi.org/10.1016/j.apt.2022.103525

    Article  CAS  Google Scholar 

  9. Trusov, G.V., Tarasov, A.B., Goodilin, E.A., Rogachev, A.S., Roslyakov, S.I., Rouvimov, S., and Mukasyan, A.S., J. Phys. Chem, C, 2016, vol. 120, no. 13, pp. 7165–7171. https://doi.org/10.1021/acs.jpcc.6b00788

    Article  CAS  Google Scholar 

  10. Yermekova, Z., Trusov, G., and Roslyakov, S.I., Abstracts of Papers, Int. Conf. on Mechanical, System and Control Engineer, Singapore: Springer Singapore, 2021. https://doi.org/10.1007/978-981-16-9632-9_2

  11. Konstantinova, E.A., Minnekhanov, A.A., Trusov, G.V., and Kytin, V.G., Nanotech., 2020, vol. 31, ID 32392554. https://doi.org/10.1088/1361-6528/ab91f1

    Article  CAS  Google Scholar 

  12. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  PubMed  Google Scholar 

  13. Roslyakov, S., Yermekova, Z., Trusov, G., Khort, A., Evdokimenko, N., Bindiug, D., and Mukasyan, A., Nano-Struct. Nano-Objects, 2021, vol. 28, ID 100796. https://doi.org/10.1016/j.nanoso.2021.10079

    Article  Google Scholar 

  14. Trusov, G.V., Tarasov, A.B., Moskovskikh, D.O., Rogachev, A.S., and Mukasyan, A.S., J. Alloys Compd., 2019, vol. 779, pp. 557–565. https://doi.org/10.1016/j.jallcom.2018.11.250

    Article  CAS  Google Scholar 

  15. Nesakumar, N., Rayappan, J.B.B., Jeyaprakas, B.G., and Krishnan, U.M., Asian J. Appl. Sci., 2012, vol. 12, no. 16, pp. 1758–1761. https://doi.org/10.3923/jas.2012.1758.1761

    Article  CAS  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The team of authors expresses special gratitude to the project leader S.N. Yudin for an informative discussion of the results of the work and useful comments. The team also thanks the scientific editor of the journal M.L. Khrushcheva for the painstaking work done, which helped to significantly improve the quality of the article.

Funding

This work was supported by the Russian Science Foundation under grant no. 22 79-10278.

Author information

Authors and Affiliations

Authors

Contributions

Zh.S. Yermekova, S.I. Roslyakov, and S.V. Savilov: develo** the experimental methodology and concept of the article; Zh.S. Yermekova, E.V. Chernyshova: collecting literature data to substantiate the relevance of the study; Zh.S. Yermekova, S.S. Yurlov: synthesis of the samples; D.V. Bindyug, E.V. Chernyshova, S.I. Roslyakov: conduction of research using X-ray diffraction analysis with a description and analysis of the results obtained; E.V. Chernyshova, S.S. Yurlov: conduction of research using scanning electron microscopy.

Corresponding author

Correspondence to Zh. S. Yermekova.

Ethics declarations

The authors declare that there are no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 330–336, August, 2023 https://doi.org/10.31857/S0044461823040011

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermekova, Z.S., Roslyakov, S.I., Yurlov, S.S. et al. Effect of the Nature and Concentration of the Fuel on the Structure and Morphology of ZnO Microspheres Produced via Spray Solution Combustion Synthesis. Russ J Appl Chem 96, 403–409 (2023). https://doi.org/10.1134/S1070427223040018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223040018

Keywords:

Navigation