Log in

Physicochemical Properties of Silicas Modified with Hydrazide Functional Groups

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The physicochemical properties of silicas prepared from copper–nickel production tailings and modified with hydrazide functional groups were studied. The IR data confirm the presence of modifier functional groups on the surface of the initial silicas. The modifiers are assumed to be immobilized on the silica support by hydrogen bonding between the hydrazide carbonyl oxygen atom and silanol hydrogen atoms. Thermal analysis shows that the sorbents obtained are stable up to 220–250°С, whereas the initial hydrazides and dimethylhydrazides start to decompose at a lower temperature. The degrees of swelling of the initial and modified sorbents, the conditional ionization constants of the functional groups, and the isoelectric point were determined. Samples were chosen for further studies of the sorption of nonferrous and rare metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chirkova, V.S., Sobgaida, N.A., and Rzazade, F.A., Vestn. Kazansk. Tekhnol. Univ., 2015, vol. 18, no. 20, pp. 263–266.

    CAS  Google Scholar 

  2. Zubkov, A.A., Bagrov, V.V., Kamrukov, A.S., Kostritsa, V.N., and Krylov, V.I., Vodooch. Vodopodgot. Vodosnabzh., 2020, no. 2 (146), pp. 36–44.

    CAS  Google Scholar 

  3. Lisichkin, G.V., Fadeev, A.Yu., Serdan, A.A., Nesterenko, P.N., Mingalev, P.G., and Furman, D.B., Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Moscow: Fizmatlit, 2003, pp. 38–56.

    Google Scholar 

  4. Habib, M., Hafida, M., Abdelkader, T., Caroline, B., and Anne, B., Sep. Purif. Technol., 2019, vol. 209, pp. 359–367. https://doi.org/10.1016/j.seppur.2018.07.035

    Article  CAS  Google Scholar 

  5. Pozhidaev, Yu.N., Izv. Vyssh. Uchebn. Zaved., Prikl. Khim. Biotekhnol., 2014, vol. 4, no. 9, pp. 7–37.

    Google Scholar 

  6. Chukin, G.D., Khimiya poverkhnosti i stroenie dispersnogo kremnezema (Surface Chemistry and Structure of Dispersed Silica), Moscow: Paladin, 2008, pp. 5–17, 30–47, 119–147.

    Google Scholar 

  7. Lisichkin, G.V. and Olenin, A.Y., Russ. J. Gen. Chem., 2021, vol. 91, pp. 870–889. https://doi.org/10.1134/S1070363221050182 

  8. Tyukavkina, V.V., Kasikov, A.G., Gurevich, B.I., and Maiorova, E.A., Khim. Tekhnol., 2014, vol. 15, no. 3, pp. 167–172. https://doi.org/10.1134/S1070363221050182 

    Article  Google Scholar 

  9. Kasikov, A.G., Shchelokova, E.A., and Dvorniko-va, A.M., Sep. Sci. Technol., 2021, vol. 56, no. 2, pp. 242–251. https://doi.org/10.1080/01496395.2020.1718709

    Article  CAS  Google Scholar 

  10. Timoshchik, O.A., Shchelokova, E.A., and Kasikov, A.G., Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, Ser. Khim. Materialoved., 2019, no. 3, pp. 368–375. https://doi.org/10.25702/KSC.2307-5252.2019.10.1.368-375

    Article  Google Scholar 

  11. Il’ves, V.G., Zuev, M.G., Sokovnin, S.Yu., and Murzakaev, A.M., Phys. Solid State, 2015, vol. 57, no. 12, pp. 2512–2518. https://doi.org/10.1134/S1063783415120161 

    Article  Google Scholar 

  12. Elisee, N.B., Dominique, R., Carmen, M.N., and Gérald, J.Z., Environ. Sci. Pollut. Res., 2018, vol. 25, no. 29, pp. 7823–7833. https://doi.org/10.1007/s11356-017-1115-7

    Article  CAS  Google Scholar 

  13. Slavinskaya, G.V. and Khokhlov, V.Yu., Potentsiometricheskoe titrovanie ionitov: Prakticheskoe rukovodstvo (Potentiometric Titration of Ion Exchangers: Practical Guide), Voronezh: Voronezhskii Gos. Univ., 2004, pp. 10–27. https://doi.org/10.1134/S1070363221050182 

    Article  Google Scholar 

  14. Neudachina, L.K., Pestov, A.V., Baranova, N.V., and Startsev, V.A., Anal. Kontr., 2011, vol. 15, no. 2, pp. 238–250. https://doi.org/10.1134/S1070363221050182 

    Article  Google Scholar 

  15. Batueva, T.D., Kondrashina, N.B., Kuz’micheva, N.D., Tiunova, T.G., and Shcherban’, M.G., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1746–1752. https://doi.org/10.1134/S1070427217110039 

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Cand. Sci. (Chem.) A.G. Kasikov, head of laboratory of the Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Resources, Kola Scientific Center, Russian Academy of Sciences for making available the silica samples.

The study was performed using the equipment of the Center for Shared Use “Investigations of Materials and Substances,” Perm Federal Research Center, Ural Branch, Russian Academy of Sciences.

Funding

The study was financially supported by the Russian Science Foundation (project no. 20-69-46066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Batueva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 7, pp. 910–918, July, 2022 https://doi.org/10.31857/S0044461822070106

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batueva, T.D., Zabolotnykh, S.A. & Chekanova, L.G. Physicochemical Properties of Silicas Modified with Hydrazide Functional Groups. Russ J Appl Chem 95, 1004–1011 (2022). https://doi.org/10.1134/S1070427222070114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222070114

Keywords:

Navigation