Log in

X-ray peak profiling, optical parameters and catalytic properties of pure and CdS doped ZnO–NiO nanocomposites

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In the current study, XRD peak profile analysis, optical and catalytic properties of pure ZnO–NiO and CdS doped ZnO-NiO nanocomposites were investigated. Average crystallite size, strain, dislocation density and bond length were determined with X-ray peak profile analysis. Optical properties such as band gap, extinction coefficient, refractive index, optical conductivity, and dielectric constants were studied by solid phase spectroscopy (SPS). The blue shift was observed in ZnO–NiO as compare to bulk ZnO due to the quantum confinement while red shift was found in CdS/ZnO–NiO nanocomposites as compare to ZnO–NiO nanocomposites is due to bulk defects inducing delocalization and pressure induced effect. The optical conductivity of ZnO–NiO nanocomposites was observed increased with do** of CdS on ZnO–NiO from 4.57 × 1018 to 6.71 × 1018 S–1, respectively. It was observed that catalytic efficiency depends on the particle size and band gap of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Javaid, S., Farrukh, M.A., Muneer, I., Shahid, M., Khaleequr-Rahman, M., and Umar, A.A., Superlattice. Microst., 2015, vol. 82, p. 234.

    Article  CAS  Google Scholar 

  2. Hingorani, S., Pillai, V., Kumar, P., Multani, M.S., and Shah, D.O., Mater. Res. Bull., 1993, vol. 28, p. 1303.

    Article  CAS  Google Scholar 

  3. Sharma, D., Rajput, J., Kaith, B.S., Kaur, M., and Sharma, S., Thin Solid Films, 2010, vol. 519, p. 1224.

    Article  CAS  Google Scholar 

  4. Yazid, H., Adnan, R., Hamid, S.A., and Farrukh, M.A., Turk. J. Chem., 2010, vol. 34, p. 639.

    CAS  Google Scholar 

  5. Goh, H.S., Adnan, R., and Farrukh, M.A., Turk. J. Chem., 2011, vol. 35, p. 375.

    CAS  Google Scholar 

  6. Saron, K., Hashim, M., and Farrukh, M., Appl. Surf. Sci., 2012, vol. 258, p. 5200.

    Article  CAS  Google Scholar 

  7. Minne, S., Manalis, S., and Quate, C., Appl. Phys. Lett., 1995, vol. 67, p. 3918.

    Article  CAS  Google Scholar 

  8. Song, J., Zhou, J., and Wang, Z.L., Nano. Lett., 2006, vol. 6, p. 1656.

    Article  CAS  Google Scholar 

  9. Sawai, J., Kawada, E., Kanou, F., Igarashi, H., Hashimoto, A., Kokugan, T., and Shimizu, M., J. Chem. Eng. Jpn., 1996, vol. 29, p. 627.

    Article  CAS  Google Scholar 

  10. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science, 2001, vol. 292, p. 1897.

    Article  CAS  Google Scholar 

  11. Baxter, J.B. and Aydil, E.S., Appl. Phys. Lett., 2005, vol. 86, p. 053114.

    Article  Google Scholar 

  12. **ong, H.M., Adv. Mater., 2013, vol. 25, p. 5329.

    Article  CAS  Google Scholar 

  13. Farhadi, S. and Roostaei-Zaniyani, Z., Polyhedron, 2011, vol. 30, p. 1244.

    Article  CAS  Google Scholar 

  14. Radwan, N.R.E., El-Shall, M.S., and Hassan, H.M.A., Appl. Catal. A: Gen., 2007, vol. 331, p. 8.

    Article  CAS  Google Scholar 

  15. Ahmad, T., Ramanujachary, K.V., Lofland, S.E., and Ganguli, A.K., Solid State Sci., 2006, vol. 8, p. 425.

    Article  CAS  Google Scholar 

  16. Yoshio, M., Todorov, Y., Yamato, K., Noguchi, H., Itoh, J.I., Okada, M., and Mouri, T., J. Power Sources, 1998, vol. 74, p. 46.

    Article  CAS  Google Scholar 

  17. Hotovy, I., Huran, J., Spiess, L., Hascik, S., and Rehacek, V., Sensor. Actuat. B: Chem., 1999, vol. 57, p. 147.

    Article  CAS  Google Scholar 

  18. Ghows, N. and Entezari, M.H., Ultrason. Sonochem., 2011, vol. 18, p. 269.

    Article  CAS  Google Scholar 

  19. Kariper, A., Güneri, E., Göde, F., Gümüs, C., and Özpozan, T., Mater. Chem. Phys., 2011, vol. 129, p. 183.

    Article  CAS  Google Scholar 

  20. Murray, C., Norris, D.J., et al., J. Am. Chem. Soc., 1993, vol. 115, p. 8706.

    Article  CAS  Google Scholar 

  21. Shahid, M., Farrukh, M.A., Umar, A.A., and Khaleeq-ur-Rahman, M., Russ. J. Phys. Chem. A, 2014, vol. 88, p. 836.

    Article  CAS  Google Scholar 

  22. Arshad, A., Farrukh, M.A., Ali, S., Khaleeq-ur-Rahman, M., and Tahir, M.A., J. Forensic Sci., vol. 60, p. 1182.

  23. Farrukh, M.A., Teck, H.B., and Adnan, R., Turk. J. Chem., 2010, vol. 34, p. 537.

    CAS  Google Scholar 

  24. Muneer, I., Farrukh, M.A., Javaid, S., Shahid, M., and Khaleeq-ur-Rahman, M., Superlattice. Microst., 2015, vol. 77, p. 256.

    Article  CAS  Google Scholar 

  25. Farrukh, M.A., Shahid, M., Muneer, I., Javaid, S., and Khaleeq-ur-Rahman, M., J. Mater. Sci.: Mater. Electron., 2016, vol. 27, p. 2994.

    CAS  Google Scholar 

  26. Zhang, J.and Goto, T., J. Nanomater. 2015, vol. 2015, p. 7.

    Google Scholar 

  27. Ali, S., Farrukh, M.A., and Khaleeq-ur-Rahman, M., Korean J. Chem. Eng., 2013, vol. 30, p. 2100.

    Article  CAS  Google Scholar 

  28. Butt, K.M., Farrukh, M.A., and Muneer, I., J. Mater. Sci.: Mater. Electron., 2016, vol. 27, p. 8493.

    CAS  Google Scholar 

  29. Lin, H., Huang, C.P., Li, W., Ni, C., Shah, S.I., and Tseng, Y.H., Appl. Catal. B. Environ. 2006, vol. 68, p. 1.

    Article  CAS  Google Scholar 

  30. Prasad, A.G.D., Kumar, J.K., and Sharanappa, P., Rom. J. Biophys., 2011, vol. 21, p. 221.

    CAS  Google Scholar 

  31. Naseem, T., and Farrukh, M.A., J. Chem., 2015, vol. 2015, p. 1.

    Article  Google Scholar 

  32. Harish Kumar, R.R., Int. Lett. Chem. Phys. Astron., 2013, vol. 14, pp. 26–36.

    Article  Google Scholar 

  33. **ong, G., Pal, U., Serrano, J.G., Ucer, K.B., and Williams, R.T., Phys. Status Solidi C, 2006, vol. 3, p. 3577.

    Article  CAS  Google Scholar 

  34. Abolanle, J.A.O.O., Adekunle, S., Oluwatobi, S., Oluwafemi, S., Abiodun, Joshua, O., Makinde, Wasiu O., Ogunfowokan, Aderemi O., Eleruja, Marcus A., and Ebenso, Eno E., Int. J. Electrochem. Sci., 2014, vol. 9, p. 3008.

    Google Scholar 

  35. Mohamed, N.B.H., Haouari, M., Jaballah, N., Bchetnia, A., Hriz, K., Majdoub, M., and Ouada, H.B., Phys. B: Condens. Matt., 2012, vol. 407, p. 3849.

    Article  Google Scholar 

  36. Saravanan, R., Santhi, K., Sivakumar, N., Narayanan, V., and Stephen, A., Mater. Charact., 2012, vol. 67, p. 10.

    Article  CAS  Google Scholar 

  37. Khan, A. and Kordesch, M.E., Mater. Lett., 2008, vol. 62, p. 230.

    Article  CAS  Google Scholar 

  38. Aggarwal, P.S. and Goswami, A., J. Phys. Chem., 1961, vol. 65, p. 2105.

    Article  CAS  Google Scholar 

  39. Kedesdy, H. and Drukalsky, A., J. Am. Chem. Soc., 1954, vol. 76, p. 5941.

    Article  CAS  Google Scholar 

  40. Osugi, J., Shimizu, K., and Nakamura, T., Rev. Phys. Chem., 1966, vol. 36, p. 59.

    CAS  Google Scholar 

  41. Kiyoshi, J.S.O., Tokio, N., and Akifumi, O., Rev. Phys. Chem. Jpn., 1967, vol. 36, p. 59.

    Google Scholar 

  42. Bindu, P. and Thomas, S., J. Theor. Appl. Phys., 2014, vol. 8, p. 123.

    Article  Google Scholar 

  43. Elilarassi, S.M.R. and Chandrasekaran, G., Optoelectron. Adv. Mater., 2010, vol. 4, p. 309.

    CAS  Google Scholar 

  44. Walch, S.P. and Goddard, W.A., J. Am. Chem. Soc., 1978, vol. 100, p. 1338.

    Article  CAS  Google Scholar 

  45. Reinhard, B.N. and Vladimir, I.K., J. Phys. Condens. Matt., 2005, vol. 17, p. S125.

  46. Nafees, M., Liaqut, W., Ali, S., and Shafique, M.A., Appl. Nanosci., 2013, vol. 3, p. 49.

    Article  CAS  Google Scholar 

  47. Asthana, A., Momeni, K., Prasad, A., Yap, Y.K., and Yassar, R.S., Appl. Phys. A., 2011, vol. 105, p. 909.

    Article  CAS  Google Scholar 

  48. Abdul Rahman, I., Ayob, M.T.M., and Radiman, S., J. Nanotech., 2014, vol. 2014, p. 8.

    Article  Google Scholar 

  49. Nair, S.S., Mathews, M., and Anantharaman, M.R., Chem. Phys. Lett., 2005, vol. 406, p. 398.

    Article  CAS  Google Scholar 

  50. Musevi, S.J., Aslani, A., Motahari, H., and Salimi, H., J. Saudi Chem. Soc., 2016, vol. 20, p. 245.

    Article  CAS  Google Scholar 

  51. Smith, D.L. and Mailhiot, C., Rev. Modern Physics, 1990, vol. 62, p. 173.

    Article  CAS  Google Scholar 

  52. Nemade, K.R. and Waghuley, S.A., Int. J. Metal., 2014, vol. 2014, p. 4.

    Article  Google Scholar 

  53. Takarkhede, M.V., Band, S.A., Nemade, K.R. and Fadanavis, S.A., Ceram. Int., 2016, vol. 42, p. 1021.

    Article  CAS  Google Scholar 

  54. Bhagat, D.J. and Dhokane, G.R., Appl. Surf. Sci., 2015, vol. 337, p. 230.

    Article  CAS  Google Scholar 

  55. Nadeem, M. and Ahmed, W., Turk. J. Phys., 2000, vol. 24, p. 651.

    CAS  Google Scholar 

  56. Pankaj, S. and Katyal, S.C., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 2115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ditta, M.A., Farrukh, M.A., Ali, S. et al. X-ray peak profiling, optical parameters and catalytic properties of pure and CdS doped ZnO–NiO nanocomposites. Russ J Appl Chem 90, 151–159 (2017). https://doi.org/10.1134/S1070427217010220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217010220

Navigation