Log in

Catalyst-Free, One-Pot, Three-Component Synthesis of 5-Amino-1,3-diphenyl-1H-pyrazole-4-carbonitriles in Green Media, and Evaluation of Their Biological Activities

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: The tandem Knoevenagel-cyclocondensation reaction of aromatic aldehydes, malonitrile, and phenylhydrazine in water and ethanol at room temperature is described as an effective, one-pot, threecomponent synthesis of many scientifically relevant heterocyclic compounds. Methods: As a part of our efforts, we have synthesized pyrazole-4-carbonitriles and characterized using various spectroscopic methods and subjected for antimicrobial analysis. Results and Discussion: From our analysis, we observed best in vitro candidate as 5-amino-3-(2,5-difluorophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile. The molecular docking analysis on common bacterial target suggested the involvement of 2,2-dialkylglycine decarboxylase (PDB ID: 1D7U) as a target for compound (IVi) (docking score: –9.32 kcal/mol). Furthermore, a molecular dynamic simulation of 100 ns resulted in the stability of best docked candidate, (IVi): 1D7U. Conclusions: We propose that best docked candidate, (IVi) as potential antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Heravi, M.M. and Zadsirjan, V., RSC Adv., 2020,vol. 10, pp. 44247–44311. https://doi.org/10.1039/D0RA09198G

  2. Kaushik, N.K., Kaushik, N., Attri, P., Kumar, N.,Kim, C.H., Verma, A.K., and Choi, E.H., Molecules, 2013, vol. 18, pp. 6620–6662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saini, M.S., Kumar, A., Dwivedi, J., and Singh, R.,Int. J. Pharma Sci. Res., 2013, vol. 4, pp. 66–77.

    Article  CAS  Google Scholar 

  4. Ameziane El Hassani, I., Rouzi, K., Assila, H., Karrouchi, K., and Ansar, M.H., Reactions, 2023, vol. 4,pp. 478–504. https://doi.org/10.3390/reactions4030029

  5. Fustero, S., Sanchez-Rosello, M., Barrio, P., andSimon-Fuentes, A., Chem. Rev., 2011, vol. 111,pp. 6984–7034. https://doi.org/10.1021/cr2000459

  6. Kumar, V., Kaur, K., Gupta, G.K., and Sharma, A.K.,Eur. J. Med. Chem., 2013, vol. 69, pp. 735–753. https://doi.org/10.1016/j.ejmech.2013.08.053

    Article  CAS  PubMed  Google Scholar 

  7. Küçükgüzel, Ş.G. and Şenkardeş, S., Eur. J. Med. Chem., 2015, vol. 97, pp. 786–815.

    Article  PubMed  Google Scholar 

  8. Aziz, H., Zahoor, A.F., and Ahmad, S., J. Chilean Chem. Soc., 2020, vol. 65, pp. 4746–4753.

    Article  CAS  Google Scholar 

  9. Burgart, Y.V., Agafonova, N.A., Shchegolkov, E.V., Krasnykh, O.P., Kushch, S.O., Evstigneeva, N.P., Gerasimova, N.A., Maslova, V.V., Triandafilova, G.A., Solodnikov, S.Y., and Ulitko, M.V., Eur. J. Med. Chem., 2020, vol. 208, Article ID: 112768. https://doi.org/10.1016/j.ejmech.2020.112768

  10. Neto, J.S. and Zeni, G., Chem. Eur. J., 2020, vol. 26,pp. 8175–8189. https://doi.org/10.1002/chem.201905276

  11. Kosurkar, U.B., Pamanji, R., Janardhan, S., Nanubolu, J., Dadmal, T.L., Mali, S.N., and Kumbhare, R.M., Russ. J. Bioorg. Chem., 2022, vol. 48, pp. S154–S165. https://doi.org/10.1134/S1068162023010144

  12. Shelke, D.E., Thorat, B.R., Mali, S.N., and Dhabarde, S.S., Russ. J. Bioorg. Chem., 2022, vol. 48,pp. S74–S86. https://doi.org/10.1134/S1068162023010259

  13. Mali, S.N. and Pandey, A., Curr. Comput. – Aided Drug Des., 2022, vol. 18, pp. 108–122. https://doi.org/10.2174/1573409918666220929145824

    Article  CAS  Google Scholar 

  14. Mali, S.N. and Pandey, A., Chem. Africa, 2022,vol. 5, pp.1215–1236. https://doi.org/10.1007/s42250-022-00462-w

  15. Pandey, A., Shyamal, S.S., Shrivastava, R., Ekka, S.,and Mali, S.N., Chem. Africa, 2022, vol. 5, pp. 1469–1491. https://doi.org/10.1007/s42250-022-00449-7

    Article  CAS  Google Scholar 

  16. Bhosale, D., Mali, S.N., Thorat, B.R., Wavhal, S.S., Bhagat, D.S., and Borade, R.M., Recent Adv. AntiInfect. Drug Dis. Formerly Recent Patents AntiInfect. Drug Dis., 2022, vol. 17, pp. 69–83. https://doi.org/10.2174/1570193X19666220531154544

    Article  CAS  Google Scholar 

  17. Mali, S.N. and Pandey, A., J. Comput. Biophys. Chem.,2022, vol. 21, pp. 857–882. https://doi.org/10.1142/S2737416522500387

  18. Desale, V.J., Mali, S.N., Thorat, B.R., and Yamgar, R.S.,Curr. Comput. – Aided Drug Des., 2021, vol. 17,pp. 493–503. https://doi.org/10.2174/1573409916666200615141047

  19. Kshatriya, R., Shelke, P., Mali, S., Yashwantrao, G.,Pratap, A., and Saha, S., ChemistrySelect, 2021, vol. 6,pp. 6230–6239. https://doi.org/10.1002/slct.202101083

  20. Mali, S.N. and Pandey, A., J. Indian Chem. Soc., 2021,vol. 98, Article ID: 100082. https://doi.org/10.1016/j.jics.2021.100082

  21. Chopade, A.R., Pol, R.P., Patil, P.A., Dharanguttikar, V.R., Naikwade, N.S., Dias, R.J., and Mali, S.N.,Comb. Chem. High Throughput Screen., 2021, vol. 24,pp. 415–422. https://doi.org/10.2174/1386207323666200605150915

  22. Nagre, D.T., Mali, S.N., Thorat, B.R., Thorat, S.A., Chopade, A.R., Farooqui, M., and Agrawal, B., Curr. Enzym.Inhibit., 2021, vol. 17, pp. 127–143. https://doi.org/10.2174/1573408017666210203203735

    Article  CAS  Google Scholar 

  23. Anuse, D.G., Thorat, B.R., Sawant, S., Yamgar, R.S., Chaudhari, H.K., and Mali, S.N., Curr. Comput. – Aided Drug Des., 2020, vol. 16, pp. 530–540. https://doi.org/10.2174/1573409915666190902143648

    Article  CAS  PubMed  Google Scholar 

  24. Kapale, S.S., Mali, S.N., and Chaudhari, H.K., Med. Drug Dis., 2019, vol. 2, Article ID: 100008. https://doi.org/10.1016/j.medidd.2019.100008

  25. Thorat, B.R., Mali, S.N., Rani, D., and Yamgar, R.S., Curr. Comput. – Aided Drug Des., 2021, vol. 17,pp. 294–306. https://doi.org/10.2174/1573409916666200302120942

  26. Mali, S.N. and Pandey, A., J. Comput. Biophys. Chem.,2021, vol. 20, pp. 267–282. https://doi.org/10.1142/S2737416521500125

  27. Mali, S.N. and Pandey, A., J. Comput. Biophys. Chem.,2022, vol. 21, pp. 83–114. https://doi.org/10.1142/S2737416521410015

  28. Mali, S.N., Tambe, S., Pratap, A.P., and Cruz, J.N.,Essential Oils, Springer, 2022, vol. 1, pp. 417–442. https://doi.org/10.1007/978-3-030-99476-1_18

  29. Rout, S., Tambe, S., Deshmukh, R.K., Mali, S., Cruz, J., Srivastav, P.P., Amin, P.D., Gaikwad, K.K., de Aguiar Andrade, E.H., and de Oliveira, M.S., Trend. Food Sci. Technol., 2022, vol. 129, pp. 421–439. https://doi.org/10.1016/j.tifs.2022.10.012

    Article  CAS  Google Scholar 

  30. Mali, S.N., Pandey, A., Bhandare, R.R., and Shaik, A.B.,Sci. Rep., 2022, vol. 12, pp. 1–21. https://doi.org/10.1038/s41598-022-20325-1

    Article  CAS  Google Scholar 

  31. Mali, S.N., Pandey, A., Thorat, B.R., and Lai, C.H., Struct. Chem., 2022, vol. 33, pp. 679–694. https://doi.org/10.1007/s11224-022-01879-2

    Article  CAS  Google Scholar 

  32. Ghosh, S., Mali, S.N., Bhowmick, D.N., and Pratap, A.P.,J. Indian Chem. Soc., 2021, vol. 98, Article ID: 100088. https://doi.org/10.1016/j.jics.2021.100088

  33. Thorat, B.R., Mali, S.N., Wagh, R.R., and Yamgar, R.S.,Curr. Comput. – Aided Drug Des., 2022, vol. 18,pp. 247–257. https://doi.org/10.2174/1573409918666220610162158

  34. Mali, S.N., Thorat, B.R., Gupta, D.R., and Pandey, A., Engineer. Proceedings, 2021, vol. 11, p. 21. https://doi.org/10.3390/ASEC2021-11157

    Article  Google Scholar 

  35. Pyrkov, T.V., Ozerov, I.V., Balitskaya, E.D., and Efremov, R.G., Russ. J. Bioorg. Chem., 2010, vol. 36,pp. 446–455. https://doi.org/10.1134/S1068162010040023

  36. Maksimenko, A.V. and Beabealashvili, R.S., Russ. J. Bioorg. Chem., 2018, vol. 44, pp. 165–172. https://doi.org/10.1134/S1068162018020048

    Article  CAS  Google Scholar 

  37. Renuka, N., Vivek, H.K., Pavithra, G., and Ajay Kumar, K., Russ. J. Bioorg. Chem., 2017, vol. 43,pp.197–210. https://doi.org/10.1134/S106816201702011X

  38. Savateev, K.V., Ulomsky, E.N., Fedotov, V.V., Rusinov, V.L., Sivak, K.V., Lyubishin, M.M., Kuzmich, N.N., and Aleksandrov, A.G., Russ. J. Bioorg. Chem., 2017, vol. 43,pp. 421–428. https://doi.org/10.1134/S1068162017040094

  39. Sun, X., Belal, A., Elanany, M.A., Alsantali, R.I.,Alrooqi, M.M., Mohamed, A.R., and Hasabelnaby, S., Russ. J. Bioorg. Chem., 2022, vol. 48, pp. 438–456. https://doi.org/10.1134/S1068162022330019

    Article  Google Scholar 

  40. Glide, Schrodinger, LLC, NY, 2022. https://www.schrodinger.com/platform/drug-discovery

  41. Nikpassand, M., Fekri, L.Z., and Khalatbari, S., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 1112–1118. https://doi.org/10.1134/S1068162023050187

    Article  CAS  Google Scholar 

  42. Sudhakar, M., Gutam, M., Yerrabelli, J.R., Irlapati, V.K., Gorityala, N., Sagurthi, S.R., and Chitneni, P.R., Russ. J.Bioorg. Chem., 2020, vol. 46, pp. 845–855. https://doi.org/10.1134/S1068162020050179

    Article  Google Scholar 

  43. Srinivas, K., Kumar, P.V., Joshi, H., Velidandi, A., and Manchal, R., Russ. J. Bioorg. Chem., 2023, vol. 49,pp. 1068–1075. https://doi.org/10.1134/S106816202305014X

  44. Dag, B., Tenekecioğlu, Y., Aral, T., Kızılkaya, H.,Erenler, R., and Genc, N., Russ. J. Bioorg. Chem., 2023,vol. 49, pp. 861–866. https://doi.org/10.1134/S1068162023040106

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Principal and Head, CS’s S.S. and L.S. Patkar College of Arts and Science, and V.P. Varde College of Commerce and Economics, Goregaon, Mumbai, 400104 India for his constant encouragement.

The author SM is thankful to Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra for usage of facility of Schrodinger Drug Discovery module, 2023.

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

The authors NJ, BT, SY, ST, and RY—selected the literature data on the research topic. The authors SM, NJ, and BT—contributed to manuscript preparation.

All authors participated in the discussions.

Corresponding authors

Correspondence to S. N. Mali or R. S. Yamgar.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, N.N., Thorat, B.R., Yadav, S. et al. Catalyst-Free, One-Pot, Three-Component Synthesis of 5-Amino-1,3-diphenyl-1H-pyrazole-4-carbonitriles in Green Media, and Evaluation of Their Biological Activities. Russ J Bioorg Chem 50, 949–961 (2024). https://doi.org/10.1134/S1068162024030208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024030208

Keywords:

Navigation