Log in

Mechanically Strong Superhydrophobic Coating Based on Cu–SiC Electrochemical Composite

  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The paper proposes a method for the formation of superhydrophobic electrochemical coatings based on copper with relatively high mechanical strength. The method of electrodeposition of copper composites with nanodispersed silicon carbide particles is considered as the main approach to obtaining such coatings. Electrochemical codeposition of nanoparticle agglomerates and a copper matrix makes it possible to obtain the required multimodal roughness of coatings. This coating, after treatment with stearic acid, acquires superhydrophobic properties. The paper presents data on the morphology, superhydrophobic properties and chemical composition of coatings. The optimal mode for the formation of such coatings has been determined. According to the results of mechanical tests, the superhydrophobic Cu–SiC composite is superior in resistance to dry friction to many other superhydrophobic coatings formed by electrochemical methods. The resulting coatings have a developed surface morphology, which makes it possible to achieve a wetting angle of 162°. This determines the increased corrosion resistance of copper coated with a superhydrophobic Cu–SiC composite in the salt spray chamber. The time until the first corrosion damages appears on copper in the salt spray chamber increases from several hours (without coating) to 3.5 days (with coating). In this case, the coating continues to remain generally superhydrophobic for more than a day, and after the loss of superhydrophobicity, it remains hydrophobic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Vazirinasab, E., Jafari, R., and Momen, G., Application of superhydrophobic coatings as a corrosion barrier: A review, Surf. Coat. Technol., 2018, vol. 341, pp. 40–56. https://doi.org/10.1016/j.surfcoat.2017.11.053

    Article  CAS  Google Scholar 

  2. Fan, Y., Tan, Y., Dou, Y., Huang, S., and Tian, X., Reducing the contact time of bouncing droplets on superhydrophobic surfaces: Foundations, strategies and applications, Chem. Eng. J., 2023, vol. 476, p. 146485. https://doi.org/10.1016/j.cej.2023.146485

    Article  CAS  Google Scholar 

  3. Zhang, D., Wang, L., Qian, H., and Li, X., Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions, J. Coat. Technol. Res., 2016, vol. 13, pp. 11–29. https://doi.org/10.1007/s11998-015-9744-6

    Article  CAS  Google Scholar 

  4. Pan, L., Dong, H., and Bi, P., Facile preparation of superhydrophobic copper surface by HNO3 etching technique with the assistance of CTAB and ultrasonication, Appl. Surf. Sci., 2010, vol. 257, pp. 1707–1711. https://doi.org/10.1016/j.apsusc.2010.09.001

    Article  CAS  Google Scholar 

  5. Zeng, Y., Qin, Z., Hua, Q., Min, Y., and Xu, Q., Sheet-like superhydrophobic surfaces fabricated on copper as a barrier to corrosion in a simulated marine system, Surf. Coat. Technol., 2019, vol. 362, pp. 62–71. https://doi.org/10.1016/j.surfcoat.2019.01.062

    Article  CAS  Google Scholar 

  6. Kuznetsov, Y.I., Semiletov, A.M., Chirkunov, A.A., Arkhipushkin, I.A., Kazanskii, L.P., and Andreeva, N.P., Protecting aluminum from atmospheric corrosion via surface hydrophobization with stearic acid and trialkoxysilanes, Russ. J. Phys. Chem. A, 2018, vol. 92, pp. 621–629. https://doi.org/10.1134/S0036024418040155

    Article  CAS  Google Scholar 

  7. Dimitrakellis, P. and Gogolides, E., Atmospheric plasma etching of polymers: A palette of applications in cleaning/ashing, pattern formation, nanotexturing and superhydrophobic surface fabrication, Microelectron. Eng., 2018, vol. 194, pp. 109–115. https://doi.org/10.1016/j.mee.2018.03.017

    Article  CAS  Google Scholar 

  8. Peng, C.-W., Chang, K.-C., Weng, C.-J., Lai, M.-C., Hsu, C.-H., Hsu, S.-C., Hsu, Y.-Y., Hung, W.-I., Wei, Y., and Yeh, J.-M., Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application, Electrochim. Acta, 2013, vol. 95, pp. 192–199. https://doi.org/10.1016/j.electacta.2013.02.016

    Article  CAS  Google Scholar 

  9. Boinovich, L.B., Emelyanenko, K.A., Domantovsky, A.G., Chulkova, E.V., Shiryaev, A.A., and Emelyanenko, A.M., Pulsed laser induced triple layer copper oxide structure for durable polyfunctionality of superhydrophobic coatings, Adv. Mater. Interfaces, 2018, vol. 5, p. 1801099. https://doi.org/10.1002/admi.201801099

    Article  CAS  Google Scholar 

  10. Emelyanenko, A.M., Boinovich, L.B., Bezdomnikov, A.A., Chulkova, E.V., and Emelyanenko, K.A., Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions, ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 24210–24219. https://doi.org/10.1021/acsami.7b05549

    Article  CAS  PubMed  Google Scholar 

  11. Boinovich, L.B., Modin, E.B., Sayfutdinova, A.R., Emelyanenko, K.A., Vasiliev, A.L., and Emelyanenko, A.M., Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties, ACS Nano, 2017, vol. 11, pp. 10113–10123. https://doi.org/10.1021/acsnano.7b04634

    Article  CAS  PubMed  Google Scholar 

  12. Guo, F., Su, X., Hou, G., and Li, P., Bioinspired fabrication of stable and robust superhydrophobic steel surface with hierarchical flowerlike structure, Colloids Surf., A, 2012, vol. 401, pp. 61–67. https://doi.org/10.1016/j.colsurfa.2012.03.013

    Article  CAS  Google Scholar 

  13. Song, J., Lu, Y., Huang, S., Liu, X., Wu, L., and Xu, W., A simple immersion approach for fabricating superhydrophobic Mg alloy surfaces, Appl. Surf. Sci., 2013, vol. 266, pp. 445–450. https://doi.org/10.1016/j.apsusc.2012.12.063

    Article  CAS  Google Scholar 

  14. Liang, J., Hu, Y., Fan, Y., and Chen, H., Formation of superhydrophobic cerium oxide surfaces on aluminum substrate and its corrosion resistance properties, Surf. Interface Anal., 2013, vol. 45, pp. 1211–1216. https://doi.org/10.1002/sia.5255

    Article  CAS  Google Scholar 

  15. Rao, A.V., Latthe, S.S., Mahadik, S.A., and Kappenstein, C., Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate, Appl. Surf. Sci., 2011, vol. 257, pp. 5772–5776. https://doi.org/10.1016/j.apsusc.2011.01.099

    Article  CAS  Google Scholar 

  16. Jiang, Z., Fang, S., Wang, C., Wang, H., and Ji, C., Durable polyorganosiloxane superhydrophobic films with a hierarchical structure by sol-gel and heat treatment method, Appl. Surf. Sci., 2016, vol. 390, pp. 993–1001. https://doi.org/10.1016/j.apsusc.2016.08.152

    Article  CAS  Google Scholar 

  17. Cui, Z., Yin, L., Wang, Q., Ding, J., and Chen, Q., A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films, J. Colloid Interface Sci., 2009, vol. 337, pp. 531–537. https://doi.org/10.1016/j.jcis.2009.05.061

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y., Li, S., Zhang, J., Liu, J., Han, Z., and Ren, L., Corrosion inhibition of biomimetic super-hydrophobic electrodeposition coatings on copper substrate, Corros. Sci., 2015, vol. 94, pp. 190–196. https://doi.org/10.1016/j.corsci.2015.02.009

    Article  CAS  Google Scholar 

  19. Zhang, F., Chen, S., Dong, L., Lei, Y., Liu, T., and Yin, Y., Preparation of superhydrophobic films on titanium as effective corrosion barriers, Appl. Surf. Sci., 2011, vol. 257, pp. 2587–2591. https://doi.org/10.1016/j.apsusc.2010.10.027

    Article  CAS  Google Scholar 

  20. Jain, R. and Pitchumani, R., Fabrication and characterization of zinc-based superhydrophobic coatings, Surf. Coat. Technol., 2018, vol. 337, pp. 223–231. https://doi.org/10.1016/j.surfcoat.2018.01.014

    Article  CAS  Google Scholar 

  21. Guo, M., Liu, M., Zhao, W., ** of smooth Cu surface, Appl. Surf. Sci., 2015, vol. 353, pp. 1277–1284. https://doi.org/10.1016/j.apsusc.2015.06.162

    Article  CAS  Google Scholar 

  22. Haghdoost, A. and Pitchumani, R., Fabricating superhydrophobic surfaces via a two-step electrodeposition technique, Langmuir, 2014, vol. 30, pp. 4183–4191. https://doi.org/10.1021/la403509d

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, C., Li, Y., Bai, N., Tan, C., Cai, P., and Li, Q., Fabrication of robust 3D superhydrophobic material by a simple and low-cost method for oil-water separation and oil absorption, Mater. Sci. Eng., B, 2017, vol. 224, pp. 117–124. https://doi.org/10.1016/j.mseb.2017.07.013

    Article  CAS  Google Scholar 

  24. Polyakov, N.A., Botryakova, I.G., Glukhov, V.G., Red’kina, G.V., and Kuznetsov, Y.I., Formation and anticorrosion properties of superhydrophobic zinc coatings on steel, Chem. Eng. J., 2021, vol. 421, p. 127775. https://doi.org/10.1016/j.cej.2020.127775

    Article  CAS  Google Scholar 

  25. Chen, X., Gong, Y., Li, D., and Li, H., Robust and easy-repairable superhydrophobic surfaces with multiple length-scale topography constructed by thermal spray route, Colloids Surf., A, 2016, vol. 492, pp. 19–25. https://doi.org/10.1016/j.colsurfa.2015.12.017

    Article  CAS  Google Scholar 

  26. **u, Y., Liu, Y., Hess, D.W., and Wong, C.P., Mechanically robust superhydrophobicity on hierarchically structured Si surfaces, Nanotechnology, 2010, vol. 21, p. 155705. https://doi.org/10.1088/0957-4484/21/15/155705

    Article  CAS  PubMed  Google Scholar 

  27. Li, M., Li, Y., Xue, F., and **g, X., A robust and versatile superhydrophobic coating: Wear-resistance study upon sandpaper abrasion, Appl. Surf. Sci., 2019, vol. 480, pp. 738–748. https://doi.org/10.1016/j.apsusc.2019.03.001

    Article  CAS  Google Scholar 

  28. Naderizadeh, S., Athanassiou, A., and Bayer, I.S., Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance, J. Colloid Interface Sci., 2018, vol. 519, pp. 285–295. https://doi.org/10.1016/j.jcis.2018.02.065

    Article  CAS  PubMed  Google Scholar 

  29. Wong, W.S.Y., Stachurski, Z.H., Nisbet, D.R., and Tricoli, A., Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks, ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 13615–13623. https://doi.org/10.1021/acsami.6b03414

    Article  CAS  PubMed  Google Scholar 

  30. Ebert, D. and Bhushan, B., Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles, J. Colloid Interface Sci., 2012, vol. 384, pp. 182–188. https://doi.org/10.1016/j.jcis.2012.06.070

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, H., Zhang, H., Tang, L., Zhou, L., Eger, C., and Zhang, Z., Comparative study on the optical, surface mechanical and wear resistant properties of transparent coatings filled with pyrogenic and colloidal silica nanoparticles, Compos. Sci. Technol., 2011, vol. 71, pp. 471–479. https://doi.org/10.1016/j.compscitech.2010.12.022

    Article  CAS  Google Scholar 

  32. Stepien, M., Chinga-Carrasco, G., Saarinen, J.J., Teisala, H., Tuominen, M., Aromaa, M., Haapanen, J., Kuusipalo, J., Mäkelä, J.M., and Toivakka, M., Wear resistance of nanoparticle coatings on paperboard, Wear, 2013, vol. 307, pp. 112–118. https://doi.org/10.1016/j.wear.2013.08.022

    Article  CAS  Google Scholar 

  33. Chen, B., Qiu, J., Sakai, E., Kanazawa, N., Liang, R., and Feng, H., Robust and superhydrophobic surface modification by a “Paint + Adhesive” method: Applications in self-cleaning after oil contamination and oil-water separation, ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 17659–17667. https://doi.org/10.1021/acsami.6b04108

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to the CKP FMI IPCE RAS for the equipment provided.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Glukhov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glukhov, V.G., Botryakova, I.G. & Polyakov, N.A. Mechanically Strong Superhydrophobic Coating Based on Cu–SiC Electrochemical Composite. Russ. J. Non-ferrous Metals 64, 15–23 (2023). https://doi.org/10.1134/S1067821224600091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067821224600091

Keywords:

Navigation