Log in

Current State of Tree Stands in the East-Ural Radioactive Trace Area Closest to Kyshtym Accident Epicenter

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract—

The current state of forest stands has been assessed in the most polluted part of East Ural Radioactive Trace (EURT) formed as a result of the Kyshtym accident in 1957. The main radionuclide in this area is 90Sr, with soil contamination density varying from 70 to 67 450 kBq/m2. Birch grass forests dominate in this territory, and more than 85% of them are aged between 70 and 120 years. Pine forests are relatively rare, with tree age reaching 80–110 years in 58% of these stands. The average age of birch forests proved to decrease with an increase in the density of soil contamination with 90Sr, which was explained by the increasing proportion of young birch stands formed in the most contaminated areas 25–30 years after the accident. No significant dependence of relative forest density and timber stock on the level of soil contamination with 90Sr in different allotments was revealed. A comparison of timber stock recorded in 2003 and 2020 showed that this parameter was increasing more rapidly in the most contaminated plots due to active growth of young birch stands in these areas during the corresponding period. Assessing natural forest regeneration in the EURT area, it was found that tree regrowth is formed in most sites, which is potentially capable of ensuring further development of forest ecosystems. The emergence of pine regrowth was observed for the first time in plots closest to the epicenter of the accident, where all pine trees perished during the acute radiation period. These samples contained an increased proportion of plants with morphological abnormalities. No dependence of the rate of tree die-off on the soil contamination density with 90Sr was revealed. The assessment the loss of trees and natural regeneration of forests was difficult due to fires that occur regularly in the EURT area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Atlas Vostochno-Ural’skogo i Karachaevskogo radioaktivnykh sledov, vklyuchaya prognoz do 2047 goda (Atlas of the Eastern Ural and Karachay Radioactive Traces, Including Prognosis until 2047), Izrael’, Yu.A., Ed., Moscow: Inst. Glob. Klimata Ekol., 2013.

  2. Aleksakhin, R.M. and Naryshkin, M.A., Migratsiya radionuklidov v lesnykh biogeotsenozakh (Radionuclide Migration in Forest Biogeocenoses), Moscow: Nauka, 1977.

  3. Prister, B.S., Problemy sel’skokhozyaistvennoi radioekologii i radiobiologii pri zagryaznenii okruzhayushchei sredy molodoi smes’yu produktov yadernogo deleniya (Problems of Agricultural Radioecology and Radiobiology upon Contamination of the Environment with a Young Mixture of Nuclear Fission Products), Chernobyl: Inst. Problem bezopasn. AES, 2008.

  4. Ekologicheskie posledstviya radioaktivnogo zagryazneniya na Yuzhnom Urale (Ecological Consequences of Radioactive Contamination in the Southern Urals), Sokolov, V.E. and Krivolutskii, D.A., Eds., Moscow: Nauka 1993.

    Google Scholar 

  5. Smirnov, E.G., Natural conditions and vegetation in the Eastern Ural Radioactive Trace, in Ekologicheskie posledstviya radioaktivnogo zagryazneniya na Yuzhnom Urale (Ecological Consequences of Radioactive Contamination in the Southern Urals), Sokolov, V.E. and Krivolutskii, D.A., Eds., Moscow: Nauka, 1993, pp. 79–84.

  6. Martyushov, V.Z., Smirnov, E.G., Tarasov, O.V., et al., Ecological monitoring in the Eastern Ural Reserve, in Koordinatsiya monitoringa v OOPT Urala (Coordination of Monitoring in Specially Protected Natural Areas of the Urals), Yekaterinburg: Yekaterinburg, 2000, pp. 96–110.

  7. Pozolotina, V.N., Molchanova, I.V., Karavaeva, E.N., et al., Sovremennoe sostoyanie nazemnykh ekosistem zony Vostochno-Ural’skogo radioaktivnogo sleda (Current State of Terrestrial Ecosystems in the Zone of Eastern Ural Radioactive Trace), Yekaterinburg: Goshchitskii, 2008.

  8. Pozolotina, V.N., Molchanova, I.V., Mikhaylovskaya, L.N., et al., in Radionuclides: Sources, Properties and Hazards, Gerada, J.G., Ed., New York: Nova Science, 2012, pp. 1–22.

    Google Scholar 

  9. Tikhomirov, F.A. and Karaban’, R.T., Radiation damage to forests under conditions of radioactive contamination, in Ekologicheskie posledstviya radioaktivnogo zagryazneniya na Yuzhnom Urale (Ecological Consequences of Radioactive Contamination in the Southern Urals), Sokolov, V.E. and Krivolutskii, D.A., Eds., Moscow: Nauka, 1993, pp. 85–95.

  10. Tolstikov, V.S. and Kuznetsov, V.N., Yadernoe nasledie na Urale: istoricheskie otsenki i dokumenty. Atomnye goroda Urala (Nuclear Legacy in the Urals: Historical Estimates and Documents. The Nuclear Cities of the Urals), Yekaterinburg: Bank Kul’turnoi Informatsii, 2017.

  11. Kukarskih, V.V., Modorov, M.V., Devi, N.M., et al., Radial growth of Pinus sylvestris in the East Ural Radioactive Trace (EURT): Climate and ionizing radiation, Sci. Total Environ., 2021, vol. 781, art. 146827.

    Article  CAS  Google Scholar 

  12. Labunska, I., Levchuk, S., Kashparov, V., et al., Current radiological situation in areas of Ukraine contaminated by the Chernobyl accident: 2. Strontium-90 transfer to culinary grains and forest woods from soils of Ivankiv district, Environ. Int., 2021, vol. 146, art. 106282.

    Article  CAS  Google Scholar 

  13. Yoschenko, V., Ohkubo, T., and Kashparov, V., Radioactively contaminated forests in Fukushima and Chernobyl, J. Forest Res., 2018, vol. 23, no. 1, pp. 3–14.

    Article  CAS  Google Scholar 

  14. Kashparov, V., Yoschenko, V., Levchuk, S., et al., Radionuclide migration in the experimental polygon of the Red Forest waste site in the Chernobyl zone: 1. Characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota, Appl. Geochem., 2012, vol. 27, no. 7, pp. 1348–1358.

    Article  CAS  Google Scholar 

  15. Holiaka, D., Yoschenko, V., Levchuk, S., and Kashparov, V., Distributions of 137Cs and 90Sr activity concentrations in trunk of Scots pine (Pinus sylvestris L.) in the Chernobyl zone, J. Environ. Radioact., 2020, vol. 222, art. 106319.

    Article  CAS  Google Scholar 

  16. Watanabe, Y., Ichikawa, S.E., Kubota, M., et al., Morphological defects in native Japanese fir trees around the Fukushima Daiichi Nuclear Power Plant, Sci. Rep., 2015, vol. 5, no. 1, art. 13232.

    Article  CAS  Google Scholar 

  17. Kato, H., Onda, Y., Hisadome, K., et al., Temporal changes in radiocesium deposition in various forest stands following the Fukushima Daiichi Nuclear Power Plant accident, J. Environ. Radioact., 2017, vol. 166, pp. 449–457.

    Article  CAS  Google Scholar 

  18. Kashparov, V.A., Zhurba, M.A., Zibtsev, S.V., et al., Estimation of expected radiation doses received during fire extinguishment in the Chernobyl zone in April 2015, Yadern. Fiz. Atom. Energ., 2015, vol. 16, no. 4, pp. 399–407.

    Google Scholar 

  19. Newman-Thacker, F. and Turnbull, L., Investigating the drivers of the unprecedented Chernobyl Power Plant wildfire in April 2020 and its effects on 137Cs dispersal, Natural Hazards, 2021, vol. 106, pp. 1877–1897.

  20. Tikhomirov, F.A. and Shcheglov, A.I., Main investigation results on the forest radioecology in the Kyshtym and Chernobyl accident zones, Sci. Total Environ., 1994, vol. 157, pp. 45–57.

    Article  CAS  Google Scholar 

  21. Alexakhin, R.M., Karaban, R.T., Prister, B.S., et al., The effects of acute irradiation on a forest biogeocenosis: Experimental data, model and practical applications for accidental cases, Sci. Total Environ., 1994, vol. 157, nos. 1–3, pp. 357–369.

    Article  CAS  Google Scholar 

  22. Ioshchenko, V.I. and Bondar’, Yu.O., Dose dependence of the frequency of morphological changes in Scots pine (Pinus sylvestris L.) in the Chernobyl exclusion zone, Radiats. Biol. Radioekol., 2009, vol. 49, no. 1, pp. 117–126.

    CAS  Google Scholar 

  23. Tarasov, O.V., Bakurov, A.S., and Krylova, E.I., Natural fires in the Eastern Ural Radioactive Trace area: Effect on radiation situation in the PO Mayak monitoring zone, in VI S”ezd po radiatsionnym issledovaniyam (radiobiologiya, radioekologiya, radiatsionnaya bezopasnost’) (Radiobiology, Radioecology, and Radiation Safety: Proc. IV Congress on Radiation Research), Moscow, 2010, vol. 2, p. 71.

  24. Chibilev, A.A. and Chibilev, A.A., Natural zoning of the Urals with regard to latitudinal and altitudinal zonality and vertical differentiation of landscapes, Izv. Samarsk. Nauch. Tsentra Ross. Akad. Nauk, vol. 14, nos. 1–6, pp. 1660–1665.

  25. Itogi izucheniya i opyt likvidatsii posledstvii avariinogo zagryazneniya territorii produktami deleniya urana (The Results of Studies and Experience in Liquidation of the Consequences of Territory Contamination with Uranium Fission Products Resulting from an Accident), Burnazyan, A.I., Ed., Moscow: Energoatomizat, 1990.

    Google Scholar 

  26. Nikipelov, B.V., Romanov, G.N., Buldakov, L.N., et al., About the accident in the Southern Urals on September 29, 1957, in Inform. byul. Mezhved. soveta po informatsii i svyazyam s obshchestvennost’yu v oblasti atomnoi energii (Bulletin of Interdepartmental Council for Public Relations and Information in the Field of Nuclear Energy), 1990, pp. 39–48.

  27. Molchanova, I.V., Mikhailovskaya, L.N., Antonov, K.L., et al., Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace, J. Environ. Radioact., 2014, vol. 138, no. 6, pp. 238–248.

    Article  CAS  Google Scholar 

  28. Tikhomirov, F.A. and Romanov, G.N., Radiation doses received by organisms under conditions of radioactive contamination in forest, in Ekologicheskie posledstviya radioaktivnogo zagryazneniya na Yuzhnom Urale (Ecological Consequences of Radioactive Contamination in the Southern Urals), Sokolov, V.E. and Krivolutskii, D.A., Eds., Moscow: Nauka, 1993, pp. 13–20.

  29. Romanov, G.N., Nikipelov, B.V., and Drozhko, E.G., The Kyshtym accident: Causes, scale and radiation characteristics, in Seminar on Comparative Assessment of the Environmental Impact of Radionuclides Released during Three Major Nuclear Accidents: Kyshtym, Windscale, Chernobyl, Luxemburg: Commission of the European Communities, 1990, pp. 25–40.

  30. Mikhailovskaya, L.N., Molchanova, I.V., Karavaeva, E.N., et al., Radioecological studies on the soils of Eastern Ural State Reserve and neighboring territories, Radiats. Biol. Radioekol., 2011, vol. 51, no. 4, pp. 476–482.

    Google Scholar 

  31. Mikhailovskaya, L.N. and Pozolotina, V.N., Spatial distribution of 90Sr from different sources in soils of the Ural region, Russia, in Strontium Contamination in the Environment, Pathak, P. and Gupta, D.K., Eds., Cham: Springer, 2020, pp. 141‒158.

    Google Scholar 

  32. ArcGIS 10.8.1. ESRI: Redlands, 2019.

  33. Lesoustroitel’naya instruktsiya (Guidelines for Forest Management), Moscow: Minprirody RF, 2018.

  34. Bitterlich, W., Volumsstichprobe aus indirekt bestimmten Deckpunkthohen, Allgemeine Forstzeitung, 1975, pp. 113–115.

    Google Scholar 

  35. Sal’nikova, I.S., Vorob’eva, T.S., Nagimov, Z.Ya., et al., Taksatsiya lesa. Khod rosta nasazhdenii: Ucheb. pos. (Forest Inventory: The Time Course of Stand Growth. A Textbook), Yekaterinburg: UGLTU, 2020.

  36. Nagimov, Z.Ya., Lysov, L.A., and Solov’ev, V.M., Normativno-spravochnye materialy po taksatsii lesov Urala. Sortimentnaya i tovarnaya struktura drevostoev (Regulatory Reference Materials for Forest Inventory in the Urals: Assortment and Commodity Structure of Tree Stands), Yekaterinburg: UGLTU, 2009.

  37. Baginskii, V.F., Taksatsiya lesa: Uchebnik dlya studentov spetsial’nosti “Lesnoe khozyaistvo”, “Lesoinzhenernoe delo” (Forest Inventory. A Manual for Students in Forest Management and Forest Engineering), Gomel: Gomel. Gos. Univ. im. F. Skoriny, 2018.

  38. Taksatsionnoe opisanie lestichestva Vostochno-Ural’skogo gosudarstvennogo zapovednika, PO “Mayak” (Inventory Description of the Forest Enterprise of Eastern Ural State Reserve, PO Mayak), Nizhny Novgorod: FGUP Povolzhskii Lesproekt, 2003.

  39. Karimullina, E.M., Mikhailovskaya, L.N., Pozolotina, V.N., and Antonova, E.V., Radionuclide uptake and dose assessment of 14 herbaceous species from the East-Ural Radioactive Trace area using the ERICA tool, Environ. Sci. Pol. Res., 2018, vol. 25, no. 14, pp. 13975–13987.

    Article  CAS  Google Scholar 

  40. STATISTICA (Data Analysis Software System), StatSoft Inc., 2011.

  41. Pozolotina, V.N., Antonova, E.V., Karimullina, E.M., and Kharitonova, O.V., The consequences of chronic radiation exposure for the vegetation in the zone of the Eastern Ural Radioactive Trace, in Voprosy radiatsionnoi bezopasnosti. Spetsial’nyi vypusk “2013 god–god okhrany okruzhayushchei sredy” (Problems of Radiation Safety, Special Issue: 2013, The Year of Protection of the Environment), 2013, pp. 31–45.

  42. Shcheglov, A.I., Biogeokhimiya tekhnogennykh radionuklidov v lesnykh ekosistemakh (Biogeochemistry of Technogenic Radionuclides in Forest Ecosystems), Moscow: Nauka, 1999.

  43. Kozubov, G.M. and Taskaev, A.I., Radiobiologicheskie issledovaniya khvoinykh v raione Chernobyl’skoi katastrofy (1986–2001) (Radiobiological Studies on Conifers in the Zone of Chernobyl Disaster, 1986–2001), Moscow: IPTs Dizain, Informatsiya, Kartografiya, 2002.

  44. Pozolotina, V.N., Otdalennye posledstviya deistviya radiatsii na rasteniya (Remote Consequences of Radiation Impact on Plants), Yekaterinburg: Goshchitskii, 2003.

  45. Sparrow, A.H. and Woodwell, G.M., Prediction of the sensitivity of plants to chronic gamma irradiation, Radiat. Bot., 1962, no. 2 (1), pp. 9–26.

  46. Abaturov, Yu.D., Abaturov, A.V., Melankholin, P.N., et al., Some features of radiation damage to pine in the Chernobyl zone, Ekologiya, 1991, no. 5, pp. 28–33.

  47. Abaturov, Yu.D., Abaturov, A.V., Bykov, A.V., and Lindeman, G.V., Vliyanie ioniziruyushchego izlucheniya na sosnovye lesa v blizhnei zone Chernobyl’skoi AES (Ionizing Radiation Impact on Pine Forests in the Zone near the Chernobyl NPP), Moscow: Nauka, 1996.

  48. Esenin, A.V. and Martyushov, V.Z., Birch stem pests in the Eastern Ural Radioactive Trace, in Ekologicheskie posledstviya radioaktivnogo zagryazneniya na Yuzhnom Urale (Ecological Consequences of Radioactive Contamination in the Southern Urals), Sokolov, V.E. and Krivolutskii, D.A., Eds., Moscow: Nauka, 1993, pp. 250–257.

  49. Grodzinskii, D.M. and Gudkov, I.N., Radiation damage to plants in the Chernobyl zone, Radiats. Biol. Radioekol. 2006, vol. 46, no. 2, pp. 189–199.

    CAS  Google Scholar 

  50. Luganskii, N.A. and Lysov, L.A., Bereznyaki Srednego Urala (Birch Forests of the Middle Urals), Sverdlovsk: Ural. Gos. Univ., 1991.

  51. Yoschenko, V., Kashparov, V., and Ohkubo, T., Behavior of the Chernobyl-derived radionuclides in forest ecosystems and effects of radiation, in Behavior of Radionuclides in the Environment, 2: Chernobyl, Konoplev, A., Kato, K., and Kalmykov, S.N., Eds., Singapore: Springer, 2020, pp. 283–320.

    Google Scholar 

  52. Petrova, I.V. and Sannikov, S.N., Izolyatsiya i differentsiatsiya populyatsii sosny obyknovennoi (Isolation and Differentiation of Scots Pine Populations), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1996.

  53. Ermakova, M.V., Classification of morphological abnormalities of trees in young Scots pine (Pinus sylvestris L.) stands in the Transural region, Aktual. Probl. Guman. Estestv. Nauk, 2017, no. 4 (1), pp. 34–41.

  54. Yoschenko, V., Nanba, K., Yoshida, S., et al., Morphological abnormalities in Japanese red pine (Pinus densiflora) at the territories contaminated as a result of the accident at Fukushima Daiichi Nuclear Power Plant, J. Environ. Radioact., 2016, vol. 165, pp. 60–67.

    Article  CAS  Google Scholar 

  55. Igonina, E.F., Fedotov, I.S., Korotkevich, A.Yu., and Rubanovich, A.V., Morphological abnormalities in the progeny of irradiated Scots pine (Pinus sylvestris L.) trees from Chernobyl populations, Radiats. Biol. Radioekol., 2012, vol. 52, no. 1, pp. 90–102.

    CAS  Google Scholar 

  56. Luganskii, N.M. and Nagimov, Z.Ya., Struktura i dinamika sosnovykh drevostoev na Srednem Urale (The Structure and Dynamics of Pine Stands in the Middle Urals), Yekaterinburg: Ural. Gos. Univ., 1994.

  57. Smolonogov, E.P., On the process of forest formation, Lesovedenie, 1999, no. 3, pp. 7‒12.

  58. Sannikov, S.N. and Sannikova, N.S., Pathways and rates of Holocene recolonization of Scandinavia by Pinus sylvestris L. and Picea species, Zh. Obshch. Biol., 2015, vol. 76, no. 6, pp. 475‒481.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was performed under state contract with the Institute of Plant and Animal Ecology, UB RAS, also with the Botanical Garden UB RAS and supported by the Russian Foundation for Basic Research (project no. 19-05-00469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Antonova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Gorgolyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozolotina, V.N., Lebedev, V.A., Antonova, E.V. et al. Current State of Tree Stands in the East-Ural Radioactive Trace Area Closest to Kyshtym Accident Epicenter. Russ J Ecol 52, 578–590 (2021). https://doi.org/10.1134/S106741362201009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106741362201009X

Keywords:

Navigation