Log in

Change in the Phytohormonal Status of Japanese Red Pine after the Fukushima Accident

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

After the accident at the Fukushima Daiichi Nuclear Power Plant, an increased frequency of cancellation of the apical dominance has been revealed in young pine trees. The detected morphoses are most likely to result from radiation damage to the apical meristems of the conifers and also from changes in their phytohormonal status. To test this hypothesis, we have checked Japanese red pine populations from areas contaminated with radionuclides after the Fukushima accident for the frequency of morphoses related to cancellation of the apical dominance and estimated the content of main phytohormone classes: indoleacetic acid (IAA), indolylbutyric acid (IBA), zeatin, gibberellic acid (GA), and abscisic acid (ABA). The concentrations of phytohormones in the needles of young trees (5–8 years) were determined by high performance liquid chromatography. It has been shown for the first time that chronic radiation exposure changes the ratio of the main phytohormone classes in the needles of Japanese red pine: the concentrations of IAA, zeatin, and ABA increase, while the concentrations of GA decreases. The results have allowed us to explain the phenomenon of the increased frequency of cancellation of the apical dominance in the populations of young conifer trees from the zone of the Fukushima accident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig 2.
Fig 3.
Fig 4.
Fig 5.
Fig 6.

Similar content being viewed by others

REFERENCES

  1. Steinhauser, G., Brandl, A., and Johnson, T.E., Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts, Sci. Tot. Environ., 2014, vols. 470–471, pp. 800–817. https://doi.org/10.1016/j.scitotenv.2013.10.029

    Article  CAS  Google Scholar 

  2. Hashimoto, S., Ugawa, S., Nanko, K., et al., The total amounts of radioactively contaminated materials in forests in Fukushima, Japan, Sci. Rep., 2012, vol. 2, 416. https://doi.org/10.1038/srep00416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watanabe, Y., Ichikawa, S., Kubota, M., et al., Morphological defects in native Japanese fir trees around the Fukushima Daiichi Nuclear Power Plant, Sci. Rep., 2015, vol. 5, 13232. https://doi.org/10.1038/srep13232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoschenko, V., Nanba, K., Yoshida, S., et al., Morphological abnormalities in Japanese red pine (Pinus densiflora) at the territories contaminated as a result of the accident at Fukushima Dai-Ichi Nuclear Power Plant, J. Environ. Radioact., 2016, vol. 165, pp. 60–67. https://doi.org/10.1016/j.jenvrad.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  5. Lutova, L.A., Ezhova, T.A., Dodueva, I.E., and Osipova, M.A., Genetika razvitiya rastenii (Genetics of Plant Development), St. Petersburg: Nauka, 2010.

  6. ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection, Annals of the ICR, vol. 37, Elsevier, 2007.

  7. Bitarishvili, S.V., Volkova, P.Yu., and Geras’kin, S.A., γ-Irradiation of barley seeds and its effect on the phytohormonal status of seedlings, Russ. J. Plant Physiol., 2018, vol. 65, n. 3, pp. 446–454. https://doi.org/10.1134/S1021443718020024

    Article  CAS  Google Scholar 

  8. Vishwakarma, K., Upadhyay, N., Kumar, N., et al., Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects, Front. Plant Sci., 2017, vol. 8, 161. https://doi.org/10.3389/fpls00161

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bitarishvili, S.V., Pishenin, I.A., Shesterikova, E.M., and Volkova, P.Yu., Abscisic acid contents in herbaceous plant populations exposed to chronic radiation impact, in Sovremennye problemy radiobiologii, radioekologii i agroekologii (Current Problems in Radiobiology, Radioecology, and Agroecology), Obninsk, 2019, p. 26.

    Google Scholar 

  10. Mounir, A.M., El-Yazid, A.A., Orabi, I.O.A., et al., Effect of sowing date, gamma irradiation and intercultivar differences on growth, pod characteristics and some endogenous plant growth regulators in snap beans, World J. Agric. Sci., 2015, vol. 11, pp. 380–390. https://doi.org/10.5829/idosi.wjas.2015.11.6.1891

    Article  CAS  Google Scholar 

  11. Woodward, A.W. and Bartel, B., Auxin: Regulation, action, and interaction, Ann. Bot., 2005, vol. 95, pp. 707–735. https://doi.org/10.1093/aob/mci083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strader, L.C., Culler, A.H., Cohen, J.D., and Bartel, B., Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in arabidopsis seedlings, Plant Physiol., 2010, vol. 153, pp. 1577–1586. https://doi.org/10.1104/pp.110.157461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jasinski, S., Piazza, P., Craft, J., et al., KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities, Curr. Biol., 2005, vol. 15, pp. 1560–1565. https://doi.org/10.1016/j.cub.2005.07.023

    Article  CAS  PubMed  Google Scholar 

  14. Kozubov, G.M. and Taskaev, A.I., Specific features of morphogenesis and growth processes in conifers in the region of the Chernobyl accident, Radiat. Biol. Radioekol., 2007, vol. 47, no. 2, pp. 204–223.

    CAS  Google Scholar 

  15. Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., et al., Cytokinins: Metabolism and function in plant adaptation to environmental stresses, Trends Plant Sci., 2012, vol. 17, pp. 172–179. https://doi.org/10.1016/j.tplants.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  16. Nishiyama, R., Watanabe, Y., Fujita, Y., et al., Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis, Plant Cell, 2011, vol. 23, pp. 2169–2183. https://doi.org/10.1105/tpc.111.087395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pavlu, J., Novak, J., Koukalova, V., et al., Cytokinin at the crossroads of abiotic stress signaling pathways, Int. J. Mol. Sci., 2018, vol. 19, 2450. https://doi.org/10.3390/ijms19082450

    Article  CAS  PubMed Central  Google Scholar 

  18. Gudkov, I.N., Osnovy obshchei i sel’skokhozyaistvennoi radiobiologii (Fundamentals of General and Agricultural Radiobiology), Kiev: USKhA, 1991.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 119-54-50003) and by the JSPS grant within the framework of the bilateral program of RFBR–JSPS joint projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bitarishvili.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitarishvili, S.V., Geras’kin, S.A., Yoschenko, V.I. et al. Change in the Phytohormonal Status of Japanese Red Pine after the Fukushima Accident. Russ J Ecol 52, 109–117 (2021). https://doi.org/10.1134/S1067413621020041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413621020041

Keywords:

Navigation