Log in

Composition and Genesis of Polyarenes in Soils of Burnt Areas of Different Ages in the Baikal Nature Reserve

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

Data on the contents of eleven polycyclic aromatic hydrocarbons (PAHs) in soils of single-time and repeatedly burnt areas of different ages in taiga landscapes of the Khamar-Daban Ridge (southern Baikal region, Buryatia) are presented. Morphological soil features inherited from the fires are identified: charcoal layer (pyr), ash layer (Cpyr), charred forest litter, (Opyr) and pyrogenic humus horizon (Apyr). The post-fire variability of the soil cover within burnt areas is related to the presence of areas with six degrees of burning of litter material. The content of PAHs in soils decreases with increasing fire intensity, as well as in the case of repeated fires on the already burnt area. Background soils of forests not disturbed by fire have a higher content of PAHs compared to that in soils of 42-year-old burnt area and one-year-old intensely burnt area. Four groups of PAHs differing in their origin have been identified using factor analysis: polyarenes of pyrogenic autochthonous origin formed in situ (naphthalene, tetraphene, pyrene, chrysene, anthracene, naphthalene, to a lesser extent benzo(a)pyrene and benzo(ghi)perylene); polyarenes of pyrogenic allochthonous origin that accumulated in soils due to atmospheric transport of ash material (benzo(a)pyrene and benzo(ghi)perylene); polyarenes of biochemical origin (fluorene and biphenyl); and polyarenes of biochemical and petrogenic origin accumulating in the deep soil horizons (phenanthrene).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. A. Alekseeva and T. A. Teplitskaya, Spectrofluorimetric Methods for the Analysis of Polycyclic Aromatic Hydrocarbons in Natural and Technogenic Environments (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  2. D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils,” Eurasian Soil Sci. 40 (3), 256–264 (2007). https://doi.org/10.1134/S1064229307030039

    Article  Google Scholar 

  3. N. S. Gamova, E. A. Faronova, Yu. N. Korotkov, T. S. Koshovskii, and T. E. Yazrikova, “Early stages of a long-term post-fire vegetation changes in Siberian fir forests of southern Baikal Region (Baikal Nature Reserve),” Ekosist.: Ekol. Din. 7 (2), 113–136 (2023). https://doi.org/10.24412/2542-2006-2023-2-88-112

    Article  Google Scholar 

  4. A. N. Gennadiev, Yu. I. Pikovskii, A. S. Tsibart, and M. A. Smirnova, “Hydrocarbons in soils: origin, composition, and behavior (review),” Eurasian Soil Sci. 48 (10), 1076–1089 (2015). https://doi.org/10.1134/S1064229315100026

    Article  CAS  Google Scholar 

  5. K. B. Gongal’skii, “Forest fires as a factor in the formation of soil animal communities,” Zh. Obshch. Biol. 67 (2), 127–138 (2006).

    Google Scholar 

  6. A. P. Zhidkin, A. N. Gennadiev, and T. S. Koshovskii, “Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast),” Eurasian Soil Sci. 50 (3), 296–304 (2017). https://doi.org/10.1134/S107868/S0032180X17030133

    Article  CAS  Google Scholar 

  7. V. A. Ivanov and G. A. Ivanova, Fires from Thunderstorms in the Forests of Siberia (Nauka, Novosibirsk, 2010) [in Russian].

    Google Scholar 

  8. G. A. Ivanova, Extended Abstract of Doctoral Dissertation in Biology (Krasnoyarsk, 2005) [in Russian].

  9. V. M. Kartushin, Agroclimatic Resources of the South of Eastern Siberia (Explanatory Text to a Series of Agroclimatic Maps of the Irkutsk, Chita Oblasts and the Buryat ASSR) (VSKnI, Irkutsk, 1969) [in Russian].

  10. T. S. Koshovskii, A. N. Gennadiev, N. S. Gamova, E. A. Faronova, and T. E. Yazrikova, “Post-fire state of taiga soils and vegetation of the Khamar-Daban Range (Cisbaikalia),” Eurasian Soil Sci. 55 (9), 1196–1208 (2022). https://doi.org/10.31857/S0032180X22090118

    Article  CAS  Google Scholar 

  11. A. A. Krasnopeeva and T. A. Puzanova, “Geochemical hydrocarbon background in the soils of the southern taiga,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 33–40 (2012).

  12. N. P. Ladeishchikov, A. N. Filippov, E. P. Zedgenidze, V. A. Obolkin, and S. A. Reznikova, Precipitation and Moisture Regime. Structure and Resources of the Climate of Lake Baikal and Adjacent Areas (Nauka, Novosibirsk, 1977), pp. 98–125. [in Russian]

    Google Scholar 

  13. V. N. Molozhnikov, Vegetation of Pribaikalye (LAP Lambert Academic Publishing, Saarbrücken, 2014) [in Russian].

    Google Scholar 

  14. Yu. I. Pikovskii, M. A. Smirnova, A. N. Gennadiev, Yu. A. Zavgorodnyaya, A. P. Zhidkin, R. G. Kovach, and T. S. Koshovskii, “Parameters of the native hydrocarbon status of soils in different bioclimatic zones,” Eurasian Soil Sci. 52 (11), 1333–1346 (2019). https://doi.org/10.1134/S0032180X1911008X

    Article  CAS  Google Scholar 

  15. Cisbaikalia and Transbaikalia (Nauka, Moscow, 1965) [in Russian].

  16. A. S. Tsibart and A. N. Gennadiev, “The influence of fires on the properties of forest soils in the Amur River basin (the Norskii Reserve),” Eurasian Soil Sci. 41 (7), 686–693 (2008). https://doi.org/10.1134/S1064229308070028

    Article  Google Scholar 

  17. S. S. Chernyanskii, Yu. V. Volosatova, and A. A. Krasnopeeva, “Peculiarities of the formation of anomalies of polyaromatic hydrocarbons in the soil cover,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 2, 31–37 (2007).

  18. I. Atanassova and G. W. Brümmer, “Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe,” Geoderma 120 (1–2), 27–34 (2004). https://doi.org/10.1016/j.geoderma.2003.08.007

    Article  CAS  Google Scholar 

  19. G. Certini, “Fire as a soil-forming factor,” Ambio 43 (2), 191–195 (2014). https://doi.org/10.1007/s13280-013-0418-2

    Article  Google Scholar 

  20. H. Chen, A. T. Chow, X. W. Li, H. G. Ni, R. Dahlgren, H. Zeng, and J. J. Wang, “Wildfire burn intensity affects the quantity and speciation of polycyclic aromatic hydrocarbons in soils,” ACS Earth Space Chem. 2 (12), 1262–1270 (2018). https://doi.org/10.1021/acsearthspacechem.8b00101

    Article  CAS  Google Scholar 

  21. S. D. Choi, “Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire,” Sci. Total Environ. 470, 1441–1449 (2014). .https://doi.org/10.1016/j.scitotenv.2013.07.100

    Article  CAS  Google Scholar 

  22. W. Chunhui, W. Shaohua, Z. Shenglu, S. Yaxing, and S. **g, “Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: a review,” Pedosphere 27 (1), 17–26 (2017). https://doi.org/10.1016/S1002-0160(17)60293-5

    Article  CAS  Google Scholar 

  23. P. Devi and A. K. Saroha, “Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge,” Bioresour. Technol. 192, 312–320 (2015). https://doi.org/10.1016/j.biortech.2015.05.084

    Article  CAS  Google Scholar 

  24. J. Du and C. **g, “Anthropogenic PAHs in lake sediments: a literature review (2002–2018),” Environ. Sci.: Processes Impacts 20 (12), 1649–1666 (2018).

    CAS  Google Scholar 

  25. A. A. Dymov, V. V. Startsev, E. Y. Milanovsky, I. A. Valdes-Korovkin, Y. R. Farkhodov, A. V. Yudina, O. Donnerhack, and G. Guggenberger, “Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia),” Geoderma 404, 115278 (2021).

    Article  CAS  Google Scholar 

  26. N. T. Edwards, “Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment a review,” J. Environ. Qual. 12 (4), 427–441 (1983). https://doi.org/10.2134/jeq1983.00472425001200040001x

    Article  CAS  Google Scholar 

  27. P. Gao, H. Li, C. P. Wilson, T. G. Townsend, P. **ang, Y. Liu, and L. Q. Ma, “Source identification of PAHs in soils based on stable carbon isotopic signatures,” Crit. Rev. Environ. Sci. Technol. 48 (13–15), 923–948 (2018). https://doi.org/10.1080/10643389.2018.1495983

    Article  CAS  Google Scholar 

  28. A. G. Gorshkov, O. N. Izosimova, O. V. Kustova, I. I. Marinaite, Y. P. Galachyants, V. N. Sinyukovich, and T. V. Khodzher, “Wildfires as a source of PAHs in surface waters of background areas (Lake Baikal, Russia),” Water 13 (19), 2636 (2021).

    Article  CAS  Google Scholar 

  29. Y. Guo, K. Wu, X. Huo, and X. Xu, “International perspectives: sources, distribution, and toxicity of polycyclic aromatic hydrocarbons,” J. Environ. Health 73 (9), 22–25 (2011).

    CAS  Google Scholar 

  30. E. J. Kim, S. D. Choi, and Y. S. Chang, “Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea,” Environ. Sci. Pollut. Res. 18, 1508–1517 (2011). https://doi.org/10.1007/s11356-011-0515-3

    Article  CAS  Google Scholar 

  31. E. J. Kim, J. E. Oh, and Y. S. Chang, “Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil,” Sci. Total Environ. 311 (1–3), 177–189 (2003). https://doi.org/10.1016/S0048-9697(03)00095-0

    Article  CAS  Google Scholar 

  32. U. Makkonen, H. Hellén, P. Anttila, and M. Ferm, “Size distribution and chemical composition of airborne particles in south–eastern Finland during different seasons and wildfire episodes in 2006,” Sci. Total Environ. 408 (3), 644–651 (2010). https://doi.org/10.1016/j.scitotenv.2009.10.050

    Article  CAS  Google Scholar 

  33. J. J. Nam, G. O. Thomas, F. M. Jaward, E. Steinnes, O. Gustafsson, and K. C. Jones, “PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter,” Chemosphere 70 (9), 1596–1602 (2008). https://doi.org/10.1016/j.chemosphere.2007.08.010

    Article  CAS  Google Scholar 

  34. A. R. Nelson, A. B. Narrowe, C. C. Rhoades, T. S. Fegel, R. A. Daly, H. K. Roth, et al., “Wildfire–dependent changes in soil microbiome diversity and function,” Nat. Microbiol. 7 (9), 1419–1430 (2022).

    Article  CAS  Google Scholar 

  35. E. Simon, S. D. Choi, and M. K. Park, “Understanding the fate of polycyclic aromatic hydrocarbons at a forest fire site using a conceptual model based on field monitoring,” J. Hazard. Mater. 317, 632–639 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.030

    Article  CAS  Google Scholar 

  36. M. Tobiszewski and J. Namieśnik, “PAH diagnostic ratios for the identification of pollution emission sources,” Environ. Pollut. 162, 110–119 (2012). https://doi.org/10.1016/j.envpol.2011.10.025

    Article  CAS  Google Scholar 

  37. A. Tsibart, A. Gennadiev, T. Koshovskii, and A. Watts, “Polycyclic aromatic hydrocarbons in post–fire soils of drained peatlands in Western Meshchera (Moscow region, Russia),” Solid Earth 5 (2), 1305–1317 (2014).

    Article  Google Scholar 

  38. A. Vergnoux, L. Malleret, L. Asia, P. Doumenq, and F. Theraulaz, “Impact of forest fires on PAH level and distribution in soils,” Environ. Res. 111 (2), 193–198 (2011). https://doi.org/10.1016/J.ENVRES.2010.01.008

    Article  CAS  Google Scholar 

  39. M. Vila-Escalé, T. Vegas-Vilarrúbia, and N. Prat, “Release of polycyclic aromatic compounds into a Mediterranean creek (Catalonia, NE Spain) after a forest fire,” Water Res. 41 (10), 2171–2179 (2007). https://doi.org/10.1016/j.watres.2006.07.029

    Article  CAS  Google Scholar 

  40. T. Wang, K. **ang, Y. Zeng, H. Gu, Y. Guan, and S. Chen, “Polycyclic aromatic hydrocarbons (PAHs) in air, foliage, and litter in a subtropical forest: spatioseasonal variations, partitioning, and litter–PAH degradation,” Environ. Pollut. 328, 121587 (2023). https://doi.org/10.1016/j.envpol.2023.121587

    Article  CAS  Google Scholar 

  41. W. Wilcke, “Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil a review,” J. Plant Nutr. Soil Sci. 163 (3), 229–248 (2000). https://doi.org/10.1002/1522-2624(200006)163:3

    Article  CAS  Google Scholar 

  42. B. Wiłkomirski, Z. A. Jabbarov, T. A. Abdrakhmanov, M. B. Vokhidova, B. T. Jabborov, M. F. Fakhrutdinova, et al., “Polycyclic aromatic hydrocarbons (PAHs) in natural and anthropogenically modified soils (a review),” Biogeosyst. Tech., No. 5, 229–243 (2018). https://doi.org/10.13187/bgt.2018.2.229

  43. X. Zhan, X. Liang, G. Xu, and L. Zhou, “Influence of plant root morphology and tissue composition on phenanthrene uptake: stepwise multiple linear regression analysis,” Environ. Pollut. 179, 294–300 (2013). https://doi.org/10.1016/j.envpol.2013.04.033

    Article  CAS  Google Scholar 

Download references

Funding

The analysis of the obtained data (soil samples) was supported by the state budget theme “Anthropogenic geochemical transformation of landscape components”; the study of vegetation was supported by the state budget theme “Plant biodiversity of Russia and adjacent countries: scientific approach to processing of collections of the Herbarium of Moscow State University as a basis for the study of regional floras.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Koshovsky.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

11475_2024_2134_MOESM1_ESM.doc

Table S1 . Soil cover components of the studied hillslope catenas

Table S2 . Soil cover components of the studied terrace areas (repeated pits are given in rows)

Table S3 . Average contents of polyarenes in the studied soils with due account for the natural variability and analytical error. PAH values are given in ng/g air-dry soil. Confidence intervals at P = 0.9 are shown

Fig. S1 . Distribution of the identified factors by depth. The sample included all pyrogenic soils. The punch shows the median, the box shows the 25–75% quartiles, and the whiskers show the minimum and maximum values, excluding outliers,

Fig. S2 . Distribution of factor 1 (left) and factor 2 (right) in the upper layer (0–5 cm) in areas with different duration of the post-fire period.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshovsky, T.S., Gennadiev, A.N. & Gamova, N.S. Composition and Genesis of Polyarenes in Soils of Burnt Areas of Different Ages in the Baikal Nature Reserve. Eurasian Soil Sc. 57, 1138–1150 (2024). https://doi.org/10.1134/S1064229324600556

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229324600556

Keywords:

Navigation