Log in

Anthropogenic Soils of Urban Parks: A Review

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

Urban parks provide a range of ecosystem services and support a healthy urban environment. Soils are directly involved in biogeochemical cycles and maintenance of biodiversity in parks. The properties of park soils and the modes of their functioning are determined by the interaction of zonal and anthropogenic factors, such as the history of the park, the duration of its existence, ways of soil transformation or technology of soil construction, and the composition of plantations. The soil cover of urban parks is heterogeneous and combines natural and anthropogenic components. Urbostratozems (Urbiс Technosols) are common soils of urban parks. The presence of filling material and technogenic inclusions (in particular, construction waste) in these soils leads to the soil alkalization and to heterogeneity of physical and chemical properties in the soil profile. The complexity of the soil cover patterns and the heterogeneity of soil properties in urban parks contribute to an increased diversity of soil microbial communities. Numerous studies demonstrate considerable contamination of the soils of urban parks in Moscow, New York, Shanghai, Bei**g, Hong Kong, Madrid, Dublin, and other cities of the world with heavy metals (primarily, Cu, Pb, and Zn) with an excess of their natural background concentrations and national hygienic standards. The content of heavy metals in soils depends on the duration and intensity of anthropogenic impact and varies greatly within each park. Despite a large number of studies on soil pollution, public health risk assessment methods are still under development. The relationships between park soils, vegetation, and soil biota also require further study. The combined study of soils and biological communities in urban parks is a promising area of research that should contribute to the development of measures to maintain the sustainability of urban ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. O. A. Antsiferova and L. S. Muracheva, “Soil characteristics of urban parks in Kaliningrad,” Vestn. Ros. Gos. Univ. im. I. Kanta, No. 7, 83–90 (2009).

    Google Scholar 

  2. B. F. Aparin and E. Yu. Sukhacheva, “Classification of urban soils of St. Petersburg,” Vestn. St.-Peterb. Univ., Ser. 3: Biol., No. 2, 115–122 (2013).

  3. B. F. Aparin and E. Yu. Sukhacheva, “Principles of soil map** of a megalopolis with St. Petersburg as an example,” Eurasian Soil Sci. 47, 650–661 (2014).

    Article  Google Scholar 

  4. I. P. Brianskaia, V. I. Vasenev, R. A. Brykova, V. N. Markelova, N. V. Ushakova, D. D. Gosse, E. V. Gavrilenko, and E. V. Blagodatskaya, “Analysis of volume and properties of imported soils for prediction of carbon atocks in aoil constructions in the Moscow metropolis,” Eurasian Soil Sci. 53, 1809–1817 (2020). https://doi.org/10.1134/S1064229320120042

    Article  Google Scholar 

  5. V. I. Vasenev, A. P. E. van Oudenhoven, O. N. Romzaykina, and R. A. Hajiaghaeva, “The ecological functions and ecosystem services of urban and technogenic soils: from theory to practice (a review),” Eurasian Soil Sci. 51, 1119–1132 (2018).

    Article  Google Scholar 

  6. M. I. Gerasimova, M. N. Stroganova, N. V. Mozharova, and T. V. Prokof’eva, Anthropogenic Soils: Genesis, Geography, and Reclamation, Ed. by G. V. Dobrovol’skii (Oikumena, Smolensk, 2003) [in Russian].

    Google Scholar 

  7. S. N. Gorbov and O. S. Bezuglova, “Specific features of organic matter in urban soils of Rostov-on-Don,” Eurasian Soil Sci. 47, 792–800 (2014).

    Article  Google Scholar 

  8. GOST (State Standard) 28329-89: Urban Planting. Terms and Definitions (Izd. Standartov, Moscow, 1991) [in Russian].

  9. V. A. Dolotov and V. V. Ponomareva, “Characteristics of soils of Leningrad Summer Garden,” Pochvovedenie, No. 9, 134–138 (1982).

    Google Scholar 

  10. L. N. Egorova, “Potentially pathogenic fungi in soils of urban parks and squares of Vladivostok,” Usp. Med. Mikol. 12 (2), 95–98 (2014).

    Google Scholar 

  11. E. A. Zharikova, “Assessment of the main properties of soils in forest and park areas of the Vladivostok city,” Zemledelie, Pochvoved., Agrokhimiya, No. 1 (26), 40–46 (2012).

    Google Scholar 

  12. L. P. Kapel’kina, I. A. Mel’nichuk, and V. V. Chasovskaya, “Soils of the Summer Garden,” Izv. S.-Peterb. Lesotekh. Akad., No. 180, 86–95 (2007).

  13. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  14. N. F. Kovyazin, I. B. Uskov, and L. M. Derzhavin, “Park ecosystems of St. Petersburg with different level of urbanization and agrochemical properties of their soils,” Agrokhimiya, No. 3, 58–66 (2010).

    Google Scholar 

  15. L. V. Kondakova, T. Ya. Ashikhmina, and O. S. Pirogova, “Phototrophic microorganisms of urban parks,” Teor. Prikl. Ekol., No. 1, 63–68 (2017).

  16. L. V. Lysak and E. V. Lapygina, “The diversity of bacterial communities in urban soils,” Eurasian Soil Sci. 51, 1050–1056 (2018).

    Article  Google Scholar 

  17. I. A. Martynenko, T. V. Prokof’eva, and M. N. Stroganova, “Composition and structure of soil cover of forest, forest-park, and park territories of Moscow city,” in Forest Ecosystems and Urbanization (KMK, Moscow, 2008), pp. 69–89.

  18. N. N. Matinian and K. A. Bakhmatova, Soils and Soil Cover of the Petergof Parks (St. Petersburg State Univ., St. Petersburg, 2012) [in Russian].

    Google Scholar 

  19. N. N. Matinian, K. A. Bakhmatova, V. S. Gorbunova, and A. A. Sheshukova, Soils and Soil Cover of the Pavlovsk Park (Serebryanyi Vek, St. Petersburg, 2019) [in Russian].

    Google Scholar 

  20. N. N. Matinyan, K. A. Bakhmatova, V. S. Gorbunova, and A. A. Sheshukova, “Soils of the Pavlovsk Park (Saint Petersburg),” Eurasian Soil Sci. 52, 1311–1320 (2019).

    Article  Google Scholar 

  21. N. N. Matinyan, K. A. Bakhmatova, and V. A. Korentsvit, “Soils of the Summer Garden (Saint Petersburg),” Eurasian Soil Sci. 50, 637–645 (2017).

    Article  Google Scholar 

  22. N. N. Matinian, E. V. Gostintseva, and K. A. Bakhmatova, Soils and Soil Cover of Gardens and Parks in Frunzenskii District of St. Petersburg (Nestor-Istoriya, St. Petersburg, 2015) [in Russian].

    Google Scholar 

  23. T. A. Paramonova, E. V. Tishkina, S. F. Krasnov, and D. O. Tolstikhin, “Soil cover pattern and main soil properties of the Vorob’evy Gory nature park,” Moscow Univ. Soil Sci. Bull. 65, 22–31 (2010).

    Article  Google Scholar 

  24. A. Yu. Polyakova, “Agrochemical properties of soils of the Gatchina Palace Park,” Agrofizika, No. 2, 32–37 (2019). https://doi.org/10.25695/AGRPH.2019.02.05

    Article  Google Scholar 

  25. T. V. Prokof’eva, M. I. Gerasimova, O. S. Bezuglova, K. A. Bakhmatova, A. A. Gol’eva, S. N. Gorbov, E. A. Zharikova, N. N. Matinyan, E. N. Nakvasina, and N. E. Sivtseva, “Inclusion of soils and soil-like bodies of urban territories into the Russian soil classification system,” Eurasian Soil Sci. 47, 959–967 (2014).

    Article  Google Scholar 

  26. T. V. Prokofeva and M. I. Gerasimova, “Urban soils: diagnostics and taxonomic position according to materials of scientific excursion in Moscow at the Suitma-9 Workshop,” Eurasian Soil Sci. 52, 995–1007 (2018).

    Article  Google Scholar 

  27. T. V. Prokofyeva, I. A. Martynenko, and F. A. Ivannikov, “Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils,” Eurasian Soil Sci. 44, 561–571 (2011).

    Article  Google Scholar 

  28. T. V. Prokof’eva and V. O. Poputnikov, “Anthropogenic transformation of soils in the Pokrovskoe-Streshnevo Park (Moscow) and adjacent residential areas,” Eurasian Soil Sci. 43, 701–711 (2010).

    Article  Google Scholar 

  29. T. V. Prokof’eva, M. S. Rozanova, and V. O. Poputnikov, “Some features of soil organic matter in parks and adjacent residential areas of Moscow,” Eurasian Soil Sci. 46, 273–283 (2013).

    Article  Google Scholar 

  30. A. A. Rakhleeva and M. N. Stroganova, “Composition and structure of soil mesofauna in park areas of Moscow city,” in Forest Ecosystems and Urbanization (KMK, Moscow, 2008), pp. 152–172.

    Google Scholar 

  31. I. N. Semenkov and T. V. Koroleva, “International environmental legislation on the content of chemical elements in soils: guidelines and schemes,” Eurasian Soil Sci. 52, 1289–1297 (2019).

    Article  Google Scholar 

  32. M. V. Semenov, “Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects,” Biol. Bull. Rev. 11, 40–53 (2021). https://doi.org/10.1134/S2079086421010084

    Article  Google Scholar 

  33. M. G. Sizova, V. F. Val’kov, and A. P. Evsyukov, “Mesofauna as an indicator of destruction degree of urban soils,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 2, 64–68 (2011).

    Google Scholar 

  34. A. V. Smagin, Theory and Practice of Soil Construction (Moscow State Univ., Moscow,) [in Russian].

  35. A. V. Smagin, N. A. Azovtseva, M. V. Smagina, A. L. Stepanov, A. D. Myagkova, and A. S. Kurbatova, “Criteria and methods to assess the ecological status of soils in relation to the landsca** of urban territories,” Eurasian Soil Sci. 39, 539–551 (2006).

    Article  Google Scholar 

  36. G. V. Stoma, N. A. Manucharova, and N. A. Belokopytova, “Biological activity of microbial communities in soils of some Russian cities,” Eurasian Soil Sci. 53, 760–771 (2020).

    Article  Google Scholar 

  37. M. N. Stroganova and M. G. Agarkova, Urban soils: study and systematics (by example of southwestern part of Moscow city),” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 7, 16–24 (1992).

  38. M. N. Stroganova, A. D. Myagkova, and T. V. Prokof’eva, “Urban soils: genesis, classification, and functions,” in Soil. City. Ecology (Za Ekonomicheskuyu Gramotnost’ Foundation, Moscow, 1997), pp. 15–85.

  39. V. A. Terekhova, M. A. Pukalchik, and A. S. Yakovlev, “The triad approach to ecological assessment of urban soils,” Eurasian Soil Sci. 47, 952–958 (2014).

    Article  Google Scholar 

  40. E. V. Tishkina, T. A. Paramonova, S. F. Krasnov, and D. O. Tolstikhin, “Estimation of soil pollution by the main ecotoxicants in the Vorob’evy Gory nature park,” Moscow Univ. Soil Sci. Bull. 65, 39–45 (2010).

    Article  Google Scholar 

  41. V. I. Chupina, “Anthropogenic soils of botanical gardens: a review,” Eurasian Soil Sci. 53, 523–533 (2020).

    Article  Google Scholar 

  42. M. Beroigui, A. Naylo, M. Walczak, M. Hafidi, M. Charzyṅski, M. Ṡwitoniak, S. Rỏzaṅski, and A. Boularban, “Physicochemical and microbiological properties of urban park soils of the cities of Marrakech, Morocco and Toruṅ, Poland: human health risk assessment of fecal coliforms and trace elements,” Catena 194, 104673 (2020). https://doi.org/10.1016/j.catena.2020.104673

    Article  Google Scholar 

  43. E. Bielińska, B. Kołodziej, and D. Sugier, “Relationship between organic carbon content and the activity of selected enzymes in urban soils under different anthropogenic influence,” J. Geochem. Explor. 129, 52–56 (2013). https://doi.org/10.1016/j.gexplo.2012.10.019

    Article  Google Scholar 

  44. H.-P. Blume, “Classification of soils in urban agglomerations,” Catena 16, 269–275 (1989).

    Article  Google Scholar 

  45. T. Bouchez, A. L. Blieux, S. Dequiedt, et al., “Molecular microbiology methods for environmental diagnosis,” Environ. Chem. Lett. 14, 423–441 (2016). https://doi.org/10.1007/s10661-009-0938-1

    Article  Google Scholar 

  46. B. Braun, U. Böckelmann, E. Grohmann, and U. Szewzyk, “Polyphasic characterization of the bacterial community in an urban soil profile with in situ and culture-dependent methods,” Appl. Soil Ecol. 31, 267–279 (2006). https://doi.org/10.1016/j.apsoil.2005.05.003

    Article  Google Scholar 

  47. M. Brtncký, V. Pecina, J. Hladký, M. Radziemska, A. Koudelková, M. Kimánek, L. Richtera, D. Adamková, J. Elbl, M. V. Galiová, L. Bálákova, J. Kynický, V. Smolíková, J. Houška, and M. D. Vaverková, “Assessment of phytotoxicity, environmental and health risks of historical urban park soils,” Chemosphere 220, 678–686 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.188

    Article  Google Scholar 

  48. W. Burghardt, J.-L. Morel, and G.-L. Zhang, “Development of the soil research about urban, traffic, mining and military areas (SUITMA),” Soil Sci. Plant Nutr. 61, 3–21 (2015). https://doi.org/10.1080/00380768.2015.10461.36

    Article  Google Scholar 

  49. R. Burt, L. Hernandez, R. Shaw, R. Tunstead, R. Ferguson, and S. Peaslee, “Trace element concentration and speciation in selected urban soils in New York city,” Environ. Monit. Assess. 186, 195–215 (2014). https://doi.org/10.1007/s10661-013-3366-1

    Article  Google Scholar 

  50. C. Canedoli, C. Ferrè, D. Abu El Khair, E. Padoa-Schioppa, and R. Comolli, “Soil organic carbon stock in different urban land uses: high stock evidence in urban parks,” Urban Ecosyst. 23, 159–171 (2020). https://doi.org/10.1007/s11252-019-00901-6

    Article  Google Scholar 

  51. S. Carpintero and J. Reyes-López, “Effect of park age, size, shape and isolation on ant assemblages in two cities of Southern Spain,” Entomol. Sci. 17, 41–51 (2014). https://doi.org/10.1111/ens.12027

    Article  Google Scholar 

  52. L. G. Chambers, Y. P. Chin, G. M. Filippelli, C. B. Gardner, E. M. Herndon, D. T. Long, W. B. Lyons, J. L. Macpherson, S. P. McElmurry, C. E. McLean, J. Moore, R. P. Moyer, K. Neumann, C. A. Nezat, et al., “Develo** the scientific framework for urban geochemistry,” Appl. Geochem. 67, 1–20 (2016). https://doi.org/j.apgeochem.2016.01.005

    Article  Google Scholar 

  53. Z. Charlop-Powers, C. C. Pregitzer, C. Lemetre, M. A. Ternei, J. Maniko, B. M. Hover, P. J. Calle, K. L. McGuire, J. Garbarino, H. M. Forgione, S. Charlop-Powers, and S. F. Brady, “Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity,” Proc. Natl. Acad. Sci. U.S.A. 113 (51), 14811–14816 (2016). https://doi.org/10.1073/pnas.1615581113

    Article  Google Scholar 

  54. Technogenic Soils of Poland, Ed. by P. Charzyńsky, P. Hulisz, and R. Bednarek (Polish Society of Soil Science, Torun, 2013).

    Google Scholar 

  55. H. Dąbkowska-Naskręt, S. Rózański, and A. Bartkowiak, “Forms and mobility of trace elements in soils of park areas from the city of Bydgoszcz, north Poland,” Soil Sci. Annu. 67 (2), 73–78 (2016). https://doi.org/10.1515/ssa-2016-0010

    Article  Google Scholar 

  56. L. Dao, H. Morrison, H. Zhang, and C. Zhang, “Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland,” Environ. Geochem. Health 36, 333–343 (2014). https://doi.org/10.1007/s10653-013-9553-8

    Article  Google Scholar 

  57. M. Deeb, P. M. Groffman, M. Blouin, S. P. Egendorf, A. Vergnes, V. Vasenev, D. L. Cao, D. Walsh, T. Morin, and G. Séré, “Using constructed soils for green infrastructure—challenges and limitations,” Soil 6, 413–434 (2020). https://doi.org/10.5194/soil-6-413-2020

    Article  Google Scholar 

  58. C. R. De Kimpe and J.-L. Morel, “Urban soil management: a growing concern,” Soil Sci. 165, 31–40 (2000).

    Article  Google Scholar 

  59. J. W. Doran and T. B. Parkin, “Defining and assessing soil quality,” in Defining Soil Quality for a Sustainable Environment: Special Publication No. 35 (Soil Science Society of America, Madison, WI, 1994), pp. 3–21.

  60. M. F. Dorokhova, “Biodiversity of algae and cyanobacteria in soils of Moscow,” in Proceedings of the 9th SUITMA Congr. “Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services” (Springer-Verlag, New York, 2019), pp. 135–144. https://doi.org/10.1007/978-3-319-89602-1

  61. K. Dreij, L. Lundin, F. Le Bihanic, and S. Lundstedt, “Polycyclic aromatic compounds in urban soils of Stockholm City: Occurrence, sources and human health risk assessment,” Environ. Res. 182, 108989 (2020). https://doi.org/10.1016/j.envres.2019.108989

    Article  Google Scholar 

  62. J. M. Galbrait, “Human-altered and human-transported (HAHT) soils in the US soil classification system,” Soil Sci. Plant Nutr. 64 (2), 190–199 (2018). https://doi.org/10.1080/00380768.2018.1442682

    Article  Google Scholar 

  63. I. Galuškova, M. Mihaljevič, L. Borůvka, O. Drábek, M. Frűhauf, and K. Němeček, “Lead isotope composition and risk elements distribution in urban soils of historically different cities Ostrava and Prague, the Czech Republic,” J. Geochem. Explor. 147, 215–221 (2014). https://doi.org/10.1016/j.gexplo.2014.02.022

    Article  Google Scholar 

  64. M. Gąsiorek, J. Kowalska, R. Mazurek, and M. Pająk, “Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland),” Chemosphere 179, 148–158 (2017). https://doi.org/10.1016/j.chemosphere.2017.03106

    Article  Google Scholar 

  65. M. I. Gerasimova and O. S. Bezuglova, “Functional-environmental and properties-oriented approaches in classifying urban soils,” in Proceedings of the 9th SUITMA Congr. “Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services” (Springer-Verlag, New York, 2019), pp. 4–10. https://doi.org/10.1007/978-3-319-89602-1

  66. A. Greinert, “The heterogeneity of urban soils in the light of their properties,” J. Soils Sediments 151, 1725–1737 (2015). https://doi.org/10.1007/s11368-014-1054-6

    Article  Google Scholar 

  67. A. Greinert and J. Kostecki, “Anthropogenic materials as bedrock of urban technosols,” in Proceedings of the 9th SUITMA Congr. “Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services” (Springer-Verlag, New York, 2019), pp. 11–20. https://doi.org/10.1007/978-3-319-89602-1

  68. Y.-G. Gu, Y.-P. Gao, and Q. Lin, “Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou,” Appl. Geochem. 67, 52–58 (2016). https://doi.org/10.1016/j.apgeochem.2016.02.004

    Article  Google Scholar 

  69. D. F. Hagmann, N. M. Goodey, C. Mathieu, J. Evans, M. F. J. Aronson, F. Gallagher, and J. A. Krumins, “Effect of metal contamination on microbial enzymatic activity in soil,” Soil Biol. Biochem. 91, 291–297 (2015). https://doi.org/10.1016/j.soilbio.2015.09.012

    Article  Google Scholar 

  70. P. F. Hendrix, M. A. Callaham Jr., J. M. Drake, C.‑Y. Huang, S. W. James, B. A. Snyder, and W. Zhang, “Pandora’s box contained bait: the global problem of introduced earthworms,” Annu. Rev. Ecol. Evol. Syst. 39, 593–613 (2008). https://doi.org/10.1146/annurev.ecolsys.39.110707.173426

    Article  Google Scholar 

  71. J. M. Hollis, “The classification of soils in urban areas,” in Soils in the Urban Environment (Blackwell, Oxford, 1991).

    Google Scholar 

  72. A. Horvát, P. Szűcs, and A. Bidlȯ, “Soil condition and pollution in urban soils: evaluation of the soil quality in a Hungarian town,” J. Soils Sediments 15, 1825–1835 (2015). https://doi.org/10.1007/s11368-014-0991-4

    Article  Google Scholar 

  73. E. Q. Hou, H. M. **ang, J. L. Li, J. Li, and D. Z. Wen, “Soil acidification and heavy metals in urban parks as affected by reconstruction intensity in a humid subtropical environment,” Pedosphere 25 (1), 82–92 (2015). https://doi.org/10.1016/S1002-0160(14)60078-3

    Article  Google Scholar 

  74. J. Howard, Anthropogenic Soils (Springer-Verlag, New York, 2017). https://doi.org/10.1007/978-3-319-54331-4

  75. N. Hui, A. Jumpponen, G. Francini, D. J. Kotze, X. Liu, M. Romantchuk, R. Strommer, and H. Setälä, “Soil microbial communities are shaped by vegetation type and park age in cities under cold climate,” Environ. Microbiol. 19 (3), 1281–1295 (2017). https://doi.org/10.1111/1462-2920.13660

    Article  Google Scholar 

  76. W.-C. Hung, M. Hernandez-Cira, K. Jimenez, I. Elston, and J. A. Jay, “Preliminary assessment of lead concentrations in topsoil of 100 parks in Los Angeles, California,” Appl. Geochem. 99, 13–21 (2018). https://doi.org/10.1016/j.apgeochem.2018.10.003

    Article  Google Scholar 

  77. H. Huot, J. Joyner, A. Cỏrdoba, R. K. Shaw, M. A. Wilson, R. Walker, T. R. Muth, and Z. Cheng, “Characterizing urban soils in New York city: profile properties and bacterial communities,” J. Soils Sediments 17, 393–407 (2017. https://doi.org/10.1007/s11368-016-1552-9

    Article  Google Scholar 

  78. M. S. Islam, M. K. Ahmed, M. H. Al-Mamun, and D. W. Eaton, “Human and ecological risks of metals in soils under different land-use types in an urban environment of Bangladesh,” Pedosphere 30 (2), 201–213 (2020). https://doi.org/10.1016/S1002-0160(17)60395-3

    Article  Google Scholar 

  79. K. Ivashchenko, N. Ananyeva, V. Vasenev, S. Sushko, A. Seleznyova, and V. Kudeyarov, “Microbial C-availability and organic matter decomposition in urban soils of megapolis depend on functional zoning,” Soil Environ. 38 (1), 31–41 (2019). https://doi.org/10:25252/SE/1961524

    Article  Google Scholar 

  80. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  81. C. G. Jones, J. H. Lawton, and M. Shachak, “Organisms as ecosystem engineers,” Oikos 69 (3), 373–386 (1994).

    Article  Google Scholar 

  82. N. Kawai, T. Murata, M. Watanabe, and H. Tanaka, “Influence of historical manmade alterations on soil-forming processes in a former imperial estate (Shrogane-goryouchi), the Institute for nature study: development of a soil evaluation technique and importance of inventory construction for urban green areas,” Soil Sci. Plant Nutr. 61 (1), 55–69 (2015). https://doi.org/10.1080/00380768.2015.1048662

    Article  Google Scholar 

  83. T. Kleber, M. Krzyźaniak, D. Świerk, A. Haenel, and S. Galecka, “How does the content of nutrients in soil affect the health status of trees in city parks?” PLoS One 14 (9), E0221514 (2019). https://doi.org/10.1371/journal.pone.0221514

    Article  Google Scholar 

  84. C.-S. I. Lee, X. Li, W. Shi, S. C. Cheung, and I. Thornton, “Metal contamination in urban, suburban and country park soils of Hong Kong: A study based on GIS and multivariate statistic,” Sci. Total Environ. 356, 45–61 (2006). https://doi.org/10.1016/j.scitotenv.2005.03.024

    Article  Google Scholar 

  85. A. Lehmann and K. Stahr, “Nature and significance of anthropogenic urban soils,” J. Soils Sediments 7 (4), 247–260 (2007). https://doi.org/10.1065/jss2007.06.235

    Article  Google Scholar 

  86. L. Lin, Y. Chen, L. Qu, Y. Zhang, and K. Ma, “Cd heavy metal and plants, rather than soil nutrient conditions, affect soil arbuscular mycorrhizal fungal diversity in green spaces during urbanization,” Sci. Total Environ. 726, 138594 (2020). https://doi.org/10.1016/j.scitotenv.2020.138594

    Article  Google Scholar 

  87. A. Lukasik, M. Szuszkiewicz, and T. Magiera, “Impact of artifacts on topsoil magnetic susceptibility enhancement in urban parks of the Upper Silesian conurbation datasets,” J. Soils Sediments 15, 1836–1846 (2015). https://doi.org/10.1007/s11368-014-0966-5

    Article  Google Scholar 

  88. X.-S. Luo, J. Ding, B. Xu, Y.-J. Wang, H.-B. Li, and S. Yu, “Incorporating bioaccessibility into human health risk assessment of heavy metals in urban park soils,” Sci. Total Environ. 424, 88–96 (2012). https://doi.org/10.1016/j.scitotenv.2012.02.053

    Article  Google Scholar 

  89. X.-S. Luo, S. Yu, Y. Zhu, and X. D. Li, “Trace metal contamination in urban soils of China,” Sci. Total Environ. 421–422, 17–30 (2012). https://doi.org/10.1016/j.scitotenv.2011.04.020

    Article  Google Scholar 

  90. L. Madrid, E. Diaz-Barrientos, E. Ruiz-Cortés, R. Reinoso, M. Biasioli, S. M. Davidson, A. S. Duarte, H. Crěman, I. Hossack, A. S. Hursthouse, T. Kralj, K. Ljung, E. Ottabong, S. Rodrigues, G. J. Urquhart, and F. Ajmone-Marsan, “Variability in concentrations of potentially toxic elements in urban parks from six European cities,” J. Environ. Monit. 8, 1158–1165 (2006). https://doi.org/10.1039/b607980f

    Article  Google Scholar 

  91. E. Maksimova and E. Abakumov, “Alluviated soils of St. Petersburg city,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 4, 93–102 (2015).

  92. O. Marfenina, L. Lysak, A. Ivanova, A. Glushakova, A. Kachalkin, V. Nikolaeva, A. Karlsen, and A. Tepeeva, “Biodiversity in urban soils: threats and opportunities (on the example of cultivated microorganisms),” in Proceedings of the 9th International Congr. “Soils of Urban Industrial Traffic Mining and Military Areas (SUITMA 9),” May 22–26, 2017, Abstracts of Papers (Springer-Verlag, New York, 2017), pp. 109–111.

  93. N. N. Matinian and K. A. Bakhmatova, Urban Soils of Saint Petersburg (Russia) (Europaische Akademie der Naturwissenschaften, Hannover, 2016).

    Google Scholar 

  94. N. N. Matinian, K. A. Bakhmatova, and A. A. Sheshukova, “Anthropogenic and natural soils of urban and suburban parks of Saint Petersburg, Russia,” in Proceedings of the 9th SUITMA Congress. Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services (Springer-Verlag, New York, 2019), pp. 212–220. https://doi.org/10.1007/978-3-319-89602-1

  95. Y. Meng, M. Cave, and C. Zhang, “Spatial distribution patterns of phosphorus in top-soils of Greater London Authority area and their natural and anthropogenic factors,” Appl. Geochem. 88, 213–220 (2018). https://doi.org/10.1016/j.apgeochem.2017.05.024

  96. M. Mihaljevič, I. Galuškova, L. Strnad, and V. Majer, “Distribution of platinum group elements in urban soils, comparison of historically different large cities Prague and Ostrava, Czech Republic,” J. Geochem. Explor. 124, 212–217 (2013).https://doi.org/10.1016/j.gexplo.2012.10.008

  97. V. Milano, J. Cortet, D. Baldantoni, A. Bellino, F. Dubs, J. Nahmani, and S. Strumia, “Collembolan biodiversity in Mediterranean urban parks: impact of history, urbanization, management and soil characteristics,” Appl. Soil Ecol. 119, 428–437 (2017). https://doi.org/10.1016/j.apsoil.2017.03.022

    Article  Google Scholar 

  98. J. L. Morel, C. Chenu, and K. Lorenz, “Ecosystems services provided by soils of urban, industrial, traffic and military areas (SUITMAs),” J. Soils Sediments 15, 1659–1666 (2015). https://doi.org/10.1007/s11368-014-0926-0

    Article  Google Scholar 

  99. A. Naylo, S. I. A. Pereira, L. Benidire, H. El Khalil, P. M. Castro, S. Ouvrard, C. Schwartz, and A. Boularbah, “Trace and major element contents, microbial communities, and enzymatic activities of urban soils of Marrakech city along an anthropization gradient,” J. Soils Sediments 19, 2153–2165 (2019). https://doi.org/10.1007/s11368-018-2221-y

    Article  Google Scholar 

  100. T. Nehls, S. Rokia, B. Mekiffer, C. Schwartz, and G. Wessolek, “Contribution of bricks to urban soil properties,” J. Soils Sediments 13, 575–584 (2012). https://doi.org/10.1007/s11368-012-0559-0

    Article  Google Scholar 

  101. C. A. Nezat, S. A. Hatch, and T. Uecker, “Heavy metal content in urban residential and park soils: A case study in Spokane, Washington, USA,” Appl. Geochem. 78, 186–193 (2017). https://doi.org/10.1016/j.apgeochem.2016.12.018

    Article  Google Scholar 

  102. S. Papa, G. Bartoli, A. Pellegrino, and A. Fioretto, “Microbial activities and trace element contents in an urban soil,” Environ. Monit. Assess. 165, 193–203 (2010). https://doi.org/10.1007/s10661-009-0938-1

    Article  Google Scholar 

  103. S. T. A. Pickett and M. L. Cadenasso, “Altered resources, disturbance, and heterogeneity: a framework for comparing urban and non-urban soils,” Urban Ecosyst. 12, 23–44 (2009). https://doi.org/10.1007/s11252-008-0047-x

    Article  Google Scholar 

  104. V. Polyakov, O. Reznichenko, J. Kostecki, and E. Abakumov, “Ecotoxicological state and pollution status of alluvial soils of Saint Petersburg, Russian Federation,” Soil Sci. Annu. 71 (3), 221–235 (2020). https://doi.org/10.37501/soilsa/127089

    Article  Google Scholar 

  105. M. Poňavič, Z. Wittingerová, P. Čoupek, and J. Buda, “Soil geochemical map** of the central part of Prague, Czech Republic,” J. Geochem. Explor. 187, 118–130 (2018). https://doi.org/10.1016/j.gexplo.2017.09.008

    Article  Google Scholar 

  106. C. Pruvost, J. Mathieu, N. Nunan, A. Gigon, N. Pando, T. Z. Lerch, and M. Blouin, “Tree growth and macrofauna colonization in technosols constructed from recycled urban wastes,” Ecol. Eng. 153, 105886 (2020). https://doi.org/10.1016/j.ecoleng.2020.105886

    Article  Google Scholar 

  107. Y. Qu, Y. Gong, J. Ma, H. Wei, Q. Liu, L. Liu, H. Wu, S. Yang, and Y. Chen, “Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Bei**g, China,” Environ. Pollut. 260, 114016 (2020). https://doi.org/10.1016/j.envpol.2020.114016

    Article  Google Scholar 

  108. K. S. Ramirez, J. W. Leff, A. Barberán, S. T. Bates, J. Betley, T. W. Crowther, E. F. Kelly, E. E. Oldfield, E. A. Shaw, C. Steenbock, M. A. Bradford, D. H. Wall, and N. Fierer, “Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally,” Proc. R. Soc. B 281, 20141988 (2014). https://doi.org/10.1098/rspb.2014.1988

    Article  Google Scholar 

  109. A. W. Rate, “Multielement geochemistry identifies the spatial pattern of soil and sediment contamination in an urban parkland, Western Australia,” Sci. Total Environ. 627, 1106–1120 (2018). https://doi.org/10.1016/j.sciotenv.2018.01.332

    Article  Google Scholar 

  110. O. N. Romzaykina, V. I. Vasenev, R. R. Khakimova, R. Hajiaghaeva, J. J. Stoorvogel, and E. A. Dovletyarova, “Spatial variability of soil properties in the urban park before and after reconstruction,” Soil Environ. 36 (2), 155–165 (2017). https://doi.org/10.25252/SE/17/51219

    Article  Google Scholar 

  111. R. Schindelbeck, H. M. van Es, G. S. Abawi, D. W. Wolfe, T. L. Whitlow, B. K. Gugino, O. J. Idowu, and B. N. Moebius-Clune, “Comprehensive assessment of soil quality for landscape and urban management,” Landscape Urban Plann. 88, 73–80 (2008). https://doi.org/10.1016/j.landurbplan.2008.08.006

    Article  Google Scholar 

  112. S. Setälä., G. Francini, J. A. Allen, A. Jumpponen, N. Hui, and D. J. Kotze, “Urban parks provide ecosystem services by retaining metals and nutrients in soils,” Environ. Pollut. 231, 451–461 (2017). https://doi.org/10.1016/j.envpol.2017.08.010

    Article  Google Scholar 

  113. K. M. Smetak, J. L. Johnson-Maynard, and J. E. Lloyd, “Earthworm population density and diversity in different-aged urban systems,” Appl. Soil Ecol. 37, 161–168 (2007). https://doi.org/10.1016/j.apsoil.2007.06.004

    Article  Google Scholar 

  114. V. I. Vasenev, A. V. Smagin, N. D. Ananyeva, K. V. Ivashchenko, E. G. Gavrilenko, T. V. Prokofeva, A. Paltseva, J. J. Stoorvogel, D. D. Gosse, and R. Valentini, “Urban soil’s functions: monitoring, assessment, and management,” in Adaptive Soil Management: From Theory to Practices (Springer-Verlag, New York, 2017), pp. 359–409. https://doi.org/10.1007/978-981-10-3638-5_18

  115. A. Vergnes, M. Blouin, A. Muratet, T. Z. Lerch, M. Mendez-Millan, M. Rouelle-Casrec, and F. Dubs, “Initial condition during technosol implementation shape earthworms and ants diversity,” Landscape Urban Plann. 159, 32–41 (2017). https://doi.org/10.1016/j.landurbplan.2016.10.002

    Article  Google Scholar 

  116. L. P. Voronina, E. V. Morachevskaya, M. M. Akishina, and O. N. Kozlova, “Evaluation of environmental health of the Kolomenskoye park under anthropogenic pressure from Moscow City,” J. Soils Sediments 19, 3226–3234 (2019). https://doi.org/10.1007/s11368-018-1985-4

    Article  Google Scholar 

  117. M. Wang, B. Markert, W. Shen, W. Chen, C. Peng, and Z. Ouyang, “Microbial biomass and enzyme activities of urban soils in Bei**g,” Environ. Sci. Pollut. Res. 18, 958–967 (2011). https://doi.org/10.1007/s11356-011-0445-0

    Article  Google Scholar 

  118. X. Wang, J. Wu, and D. Kumari, “Composition and functional genes analysis of bacterial communities from urban parks of Shanghai, China and their role in ecosystem functionality,” Landscape Urban Plann. 177, 83–91 (2018). https://doi.org/10.1016/j.landurbanplan.2018.05.003

    Article  Google Scholar 

  119. G. Wessolek and A. Toland, “Devil in the sand—the case of Teufelsberg Berlin and cultural ecosystem services provided by urban soils,” Geophys. Res. Abstr. 19, 231–240 (2017).

    Google Scholar 

  120. B. Yan, Q. Lu., J. He, Y. Qi, G. Fu, N. **ao, and J. Li, “Composition and interaction frequencies in soil bacterial communities change in association with urban park age in Bei**g,” Pedobiologia 84, 150699 (2021). https://doi.org/10.1016/j.pedobi.2020.150699

    Article  Google Scholar 

  121. L. Yang, L. Yuan, K. Peng, and S. Wu, “Nutrients and heavy metals in urban soils under different green space types in Anji, China,” Catena 115, 39–46 (2014). https://doi.org/10.1016/j.catena.2013.11.008

    Article  Google Scholar 

  122. D. Ylmaz, P. Cannavo, G. Séré, L. Vidal-Beaudet, M. Legret, O. Damas, and P.-E. Peyneau, “Physical properties of structural soils containing waste materials to achieve urban greening,” J. Soils Sediments 18, 442–455 (2018). https://doi.org/10.1007/s11368-016-1524-0

    Article  Google Scholar 

  123. Y. Yuangen, C. D. Campbell, L. Clark, C. M. Cameron, and E. Paterson, “Microbial indicators of heavy metal contamination in urban and rural soils,” Chemosphere 63, 1942–1952 (2006). https://doi.org/10.1016/j.chemosphere.2005.10.009

    Article  Google Scholar 

  124. J. Zhang, X. Wang, J. Wu, and D. Kumari, “Fungal community composition analysis of 24 different urban parks in Shanghai, China,” Urban Ecosyst. 22, 855–863 (2019). https://doi.org/10.1007/s11252-019-00867-5

    Article  Google Scholar 

  125. L. Zhao, Y. Yan, R. Yu, G. Hu, Y. Cheng, and H. Huang, “Source apportionment and health risk of the bioavailable and residual fractions of heavy metals in the park soils in a coastal city of China using a receptor model combined with Pb isotopes,” Catena 194, 104736 (2020). https://doi.org/10.1016/j.catena.2020.104736

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-14-50242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bakhmatova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhmatova, K.A., Matynyan, N.N. & Sheshukova, A.A. Anthropogenic Soils of Urban Parks: A Review. Eurasian Soil Sc. 55, 64–80 (2022). https://doi.org/10.1134/S1064229322010021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322010021

Keywords:

Navigation