Log in

Effect of trees on the decomposition rate of cellulose in soils under industrial pollution

  • Degradation, Rehabilitation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of spruce and birch on the spatial distribution of the decomposition rate of pure cellulose in the region of the Middle Urals copper smelter near the town of Revda in Sverdlovsk oblast (southern taiga) was studied. The contamination of the soil by heavy metals (Cu, Pb, Cd, and Zn) decreased the decomposition rate by 2.7 (spruce-fir forests) to 5.4 (birch forests) times and increased its spatial variation (the coefficient of variation reached 80–226%). The trees in the forests could not be considered as the main determinants of the horizontal structure of the soil microbocenosis, because the position of a test point with respect to the tree stem explains less than 10% of the total spatial variance of the cellulolytic activity. The decomposition rate of the cellulose in the spruce-fir forests was higher than in the birch forests; it was higher in the undercrown areas than in the forest canopy gaps. It was supposed that this was related to the buffering role of the litter, which smoothed the fluctuations of the water content. Under the pollution conditions, the differences between the coniferous and deciduous biotopes increased, and those between the undercrown areas and canopy gaps decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Blagodatskaya, T. V. Pampura, I. N. Bogomolova, et al., “Effect of Emissions from a Copper-Nickel Smelter on Soil Microbial Communities in Forest Biogeocenoses of the Kola Peninsula,” Izv. Akad. Nauk, Ser. Biol., No. 2, 232–242 (2008) [Biol. Bull. 35 (2), 202–210 (2008)].

  2. E. L. Vorobeichik, “Changes in the Spatial Structure of the Decomposition Process under Conditions of Atmospheric Pollution of Forest Ecosystems,” Izv. Akad. Nauk, Ser. Biol., No. 2, 368–379 (2002) [Biol. Bull. 29 (3), 300–310 (2002)].

  3. E. L. Vorobeichik, “Response of Forest Litter and Its Relation to Soil Biota under Toxic Contamination,” Lesovedenie, No. 2, 32–42 (2003).

  4. E. L. Vorobeichik, “Seasonal Changes in the Spatial Distribution of Cellulolytic Activity of Soil Microflora under Conditions of Atmospheric Pollution,” Ekologiya, No. 6, 427–437 (2007) [Russ. J. Ecol. 38 (6), 398–407 (2007)].

  5. E. L. Vorobeichik, “Ecology of Impact Regions: Outlooks for Basic Research,” in Materials of the VI All-Russian Population Seminars (Nizhnii Tagil, 2004), pp. 36–45 [in Russian].

  6. E. L. Vorobeichik and P. G. Pishchulin, “Effect of Individual Trees on the pH and the Content of Heavy Metals in Forest Litters upon Industrial Contamination,” Pochvovedenie, No. 8, 925–937 (2009) [Eur. Soil Sci. 42 (8), 861–873 (2009)].

  7. E. L. Vorobeichik, O. F. Sadykov, and M. G. Farafontov, Ecological Standardization of the Technogenic Contamination of Terrestrial Ecosystems (at the Local Level) (Nauka, Yekaterinburg, 1994) [in Russian].

    Google Scholar 

  8. K. B. Gongal’skii, Zh. V. Filimonova, and A. S. Zaitsev, “Relationship between Soil Invertebrate Abundance and Soil Heavy Metal Contents in the Soil in the Environs of the Kosogorskii Metallurgical Plant, Tula Oblast,” Ekologiya, No. 1, 70–73 (2010) [Russ. J. Ecol. 41 (1), 67–70 (2010)].

  9. E. A. Dmitriev, I. V. Rekubratskii, Yu. V. Gorelova, and V. G. Vityazev, “Organization of Soil Cover Properties under Spruce Trees,” in Structural-Functional Role of Soil in the Biosphere (Moscow, 1999), pp. 59–70 [in Russian].

  10. O. V. Dulya, “Phytogenic Field of a Tree under Chemical Contamination,” in Ecology in the Changing World (Yekaterinburg, 2006), pp. 53–62 [in Russian].

  11. D. G. Zvyagintsev, I. P. Bab’eva, and G. M. Zenova, Soil Biology (Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  12. V. S. Ipatov and L. A. Kirikova, “Characterization of the Phytogenic Field of Risea abies (Rinaseae) in Green-Moss Pine Forests,” Bot. Zh. 86(5), 94–103 (2001).

    Google Scholar 

  13. S. Yu. Kaigorodova and E. L. Vorobeichik, “Changes in Certain Properties of Gray Forest Soil Polluted with Emission from a Copper-Smelter Plant,” Ekologiya, No. 3, 187–193 (1996) [Russ. J. Ecol. 27 (3), 177–183 (1996)].

  14. L. O. Karpachevskii, Forest and Forest Soils (Lesnaya Prom-st’, Moscow, 1981) [in Russian].

    Google Scholar 

  15. A. M. Kryshen’, “Phytogenic Field: Theory and Manifestations in the Nature,” Izv. Akad. Nauk, Ser. Biol., No. 4, 437–443 (2000).

  16. N. A. Kuznetsova, “Soil-dwelling Collembola in Coniferous Forests along the Gradient of Pollution with Emissions from the Middle Ural Copper Smelter,” Ekologiya, No. 6, 439–448 (2009) [Russ. J. Ecol. 40 (6), 415–423 (2009)].

  17. O. E. Marfenina, Anthropogenic Ecology of Soil Fungi (Meditsina dlya Vsekh, Moscow, 2005) [in Russian].

    Google Scholar 

  18. V. V. Nikonov and N. V. Lukina, “Influence of Spruce and Pine on the Acidity and Composition of Atmospheric Fallout in North Taiga Forests of an Industrially Developed Region,” Ekologiya, No. 2, 97–105 (2000).

  19. V. V. Nikonov, N. V. Lukina, L. M. Polyanskaya, and A. N. Panikova, “Distribution Pattern of Microorganisms in the Al-Fe-Humus Podzols of Northern-Taiga Spruce Forests: Natural and Technogenic Aspects,” Mikrobiologiya 70(3), 374–383 (2001) [Russ. J. Ecol. 31 (2), 82–89 (2000)].

    Google Scholar 

  20. L. M. Nosova and N. V. Dylis, “Determination of the Comparable Decomposition rates of Organic Substances in Forest Biocenoses,” Lesovedenie, No. 4, 23–29 (1972).

  21. A. D. Pokarzhevskii, K. B. Gongal’skii, A. S. Zaitsev, and F. A. Savin, Spatial Ecology of Soil Animals (KMK, Moscow, 2007) [in Russian].

    Google Scholar 

  22. I. V. Stepanova, “Degradation of Organic Matter,” in Structure of Mountain Phytocenotic Subarctic Systems (St. Petersburg, 1995), pp. 61–65 [in Russian].

  23. O. A. Fomicheva, L. M. Polyanskaya, V. V. Nikonov, et al., “Population and Biomass of Soil Microorganisms in Old-Growth Primary Spruce Forests in the Northern Taiga,” Pochvovedenie, No. 12, 1469–1478 (2006) [Eur. Soil Sci. 39 (12), 1323–1331 (2006)].

  24. C. Armas, R. Ordiales, and F. I. Pugnaire, “Measuring Plant Interactions: A New Comparative Index,” Ecology 85(10), 2682–2686 (2004).

    Article  Google Scholar 

  25. E. Bååth, “Effects of Heavy Metals in Soil on Microbial Processes and Populations (a Review),” Water Air Soil Pollut. 47(3–4), 335–379 (1989).

    Article  Google Scholar 

  26. J. Bauhus, T. Vor, N. Bartsch, and A. Cowling, “The Effects of Gaps and Liming on Forest Floor Decomposition and Soil C and N Dynamics in a Fagus sylvatica Forest,” Can. J. For. Res. 34(3), 509–518 (2004).

    Article  Google Scholar 

  27. B. Berg, G. Ekbohm, B. Soderstrom, and H. Staaf, “Reduction of Decomposition Rates of Scots Pine Needle Litter due to Heavy-Metal Pollution,” Water Air Soil Pollut. 59(1–2), 165–177 (1991).

    Google Scholar 

  28. P. Bienkowski, “Cellulose Decomposition as Bioenergetic Indicator of Soil Degradation,” Pol. Ecol. Stud. 16(3–4), 235–244 (1990).

    Google Scholar 

  29. P. Bienkowski, “The Rate of Cellulose Decomposition in Soils of Spitsbergen Tundra,” Pol. Polar Res. 11(1–2), 39–45 (1990).

    Google Scholar 

  30. Biology of Plant Litter Decomposition, Eds. by C. H. Dickinson and G. J. F. Pugh (London, 1974).

  31. J. Cortez, “Field Decomposition of Leaf Litters: Relationships between Decomposition Rates and Soil Moisture, Soil Temperature, and Earthworm Activity,” Soil Biol. Biochem. 30(6), 783–793 (1998).

    Article  Google Scholar 

  32. Cotton Strip Assay: an Index of Decomposition in Soils, Ed. by A. F. Harrison, P. M. Latter, and D. W. H. Walton (ITE, Grange-over-Sands, 1988).

    Google Scholar 

  33. P. J. Coughtrey, C. H. Jones, M. H. Martin, and S. W. Shales, “Litter Accumulation in Woodlands Contaminated by Pb, Zn, Cd, and Cu,” Oecologia 39(1), 51–60 (1979).

    Article  Google Scholar 

  34. A. Deschaseaux and J.-F. Ponge, “Changes in the Composition of Humus Profiles Near the Trunk Base of an Oak Tree (Quercus petraea (Mattus.) Liebl.),” Eur. J. Soil Biol. 37(1), 9–16 (2001).

    Article  Google Scholar 

  35. P. K. Donnelly, J. A. Entry, D. L. Crawford, and Jr. K. Cromack, “Cellulose and Lignin Degradation in Forest Soils: Response to Moisture, Temperature, and Acidity,” Microb. Ecol. 20(3), 289–295 (1990).

    Article  Google Scholar 

  36. M. Drewnik, “The Effect of Environmental Conditions on the Decomposition Rate of Cellulose in Mountain Soils,” Geoderma 132(1–2), 116–130 (2006).

    Article  Google Scholar 

  37. C. H. Ettema and D. A. Wardle, “Spatial Soil Ecology,” Trends Ecol. Evol. 17(4), 177–183 (2002).

    Article  Google Scholar 

  38. Z. Fischer, M. Niewinna, and I. Yasulbutaeva, “Intensity of Organic Matter Decomposition in Various Landscapes of Caucasus (Daghestan),” Pol. J. Ecol. 54(1), 105–116 (2006).

    Google Scholar 

  39. B. Freedman and T. C. Hutchinson, “Effects of Smelter Pollutants on Forest Leaf Litter Decomposition Near a Nickel-Copper Smelter at Sudbury, Ontario,” Can. J. Bot. 58(15), 1722–1736 (1980).

    Article  Google Scholar 

  40. H. Fritze, S. Niini, K. Mikkola, and A. Mäkinen, “Soil Microbial Effects of a Cu-Ni Smelter in Southwestern Finland,” Biol. Fertility Soils 8(1), 87–94 (1989).

    Article  Google Scholar 

  41. G. M. Gadd, “Interactions of Fungi with Toxic Metals,” New Phytol. 124(1), 25–60 (1993).

    Article  Google Scholar 

  42. K. E. Giller, E. Witter, and S. P. Mcgrath, “Toxicity of Heavy Metals to Microorganisms and Microbial Processes in Agricultural Soils: A Review,” Soil Biol. Biochem. 30(10–11), 1389–1414 (1998).

    Article  Google Scholar 

  43. K. Hansen, C. Beier, P. Gundersen, and L. Rasmussen, “Experimental Manipulations of Water and Nutrient Input to a Norway Spruce Plantation at Klosterhede, Denmark: III. Effects on Throughfall, Soil Water Chemistry, and Decomposition,” Plant Soil 168–169(1), 623–632 (1995).

    Article  Google Scholar 

  44. S. Hättenschwiler and P. M. Vitousek, “The Role of Polyphenols in Terrestrial Ecosystem Nutrient Cycling,” Trends Ecol. Evol. 15(6), 238–243 (2000).

    Article  Google Scholar 

  45. H. Herlitzius, “Biological Decomposition Efficiency in Different Woodland Soils,” Oecologia 57(1–2), 78–97 (1983).

    Article  Google Scholar 

  46. G. R. Iason, J. J. Lennon, R. J. Pakeman, et al., “Does Chemical Composition of Individual Scots Pine Trees Determine the Biodiversity of Their Associated Ground Vegetation?,” Ecol. Lett. 8(4), 364–369 (2005).

    Article  Google Scholar 

  47. J. L. Innes, Forest Health: Its Assessment and Status (CAB International, Wallingford, 1993).

    Google Scholar 

  48. S. E. James, M. Partel, S. D. Wilson, and D. A. Peltzer, “Temporal Heterogeneity of Soil Moisture in Grassland and Forest,” J. Ecol. 91(2), 234–239 (2003).

    Article  Google Scholar 

  49. C. G. Jones, J. H. Lawton, and M. Shachak, “Organisms as Ecosystem Engineers,” Oikos 69(3), 373–386 (1994).

    Article  Google Scholar 

  50. N. Kaneko and R. Kofuji, “Effects of Soil pH Gradient Caused by Stemflow Acidification on Soil Microarthropod Community Structure in a Japanese Red Cedar Plantation: An Evaluation of Ecological Risk on Decomposition,” J. Forest Res. 5(3), 157–162 (2000).

    Article  Google Scholar 

  51. R. T. Koide and T. Wu, “Ectomycorrhizas and Retarded Decomposition in a Pinus resinosa Plantation,” New Phytol. 158(2), 401–407 (2003).

    Article  Google Scholar 

  52. H. Kopeszki, “Abundanz und Abbauleistung der Mesofauna (Collembolen) als Kriterien für die Bodenzustandsdiagnose im Wiener Buchenwald,” Zool. Anz. 227(3–4), 136–159 (1991).

    Google Scholar 

  53. M. V. Kozlov and E. L. Zvereva, “Industrial Barrens: Extreme Habitats Created by Non-Ferrous Metallurgy,” Rev. Env. Sci. Biotechnol. 6(1–3), 231–259 (2007).

    Article  Google Scholar 

  54. M. V. Kozlov, E. L. Zvereva, and V. E. Zverev, Impacts of Point Polluters on Terrestrial Biota: Comparative Analysis of 18 Contaminated Areas (Springer, Dordrecht, 2009).

    Book  Google Scholar 

  55. Jr. D. F. Levia and E. E. Frost, “A Review and Evaluation of Stemflow Literature in the Hydrologic and Biogeochemical Cycles of Forested and Agricultural Ecosystems,” J. Hydrol. 274(1–4), 1–29 (2003).

    Article  Google Scholar 

  56. Jr. D. F. Levia and E. E. Frost, “Variability of Through-fall Volume and Solute Inputs in Wooded Ecosystems,” Progr. Phys. Geogr. 30(5), 605–632 (2006).

    Article  Google Scholar 

  57. J. D. Lousier and D. Parkinson, “Litter Decomposition in Cool Temperature Deciduous Forest,” Can. J. Bot. 54, 419–436 (1976).

    Article  Google Scholar 

  58. N. A. McEnroe and H.-S. Helmisaari, “Decomposition of Coniferous Forest Litter along a Heavy Metal Pollution Gradient, Southwest Finland,” Environ. Pollut. 113(1), 11–18 (2001).

    Article  Google Scholar 

  59. M. A. McLean and V. Huhta, “Temporal and Spatial Fluctuations in Moisture Affect Humus Microfungal Community Structure in Microcosms,” Biol. Fertil. Soils 32(2), 114–119 (2000).

    Article  Google Scholar 

  60. R. J. Mitchell, C. D. Campbell, S. J. Chapman, et al., “The Cascading Effects of Birch on Heather Moorland: A Test for the Top-Down Control of an Ecosystem Engineer,” J. Ecol. 95(3), 540–554 (2007).

    Article  Google Scholar 

  61. S. J. Morris and W. J. Dress, “The Interrelationship between the Spatial Distribution of Microorganisms and Vegetation in Forest Soils,” in The Spatial Distribution of Microbes in the Environment (Springer, Dordrecht, 2007), pp. 311–329.

    Chapter  Google Scholar 

  62. R. Ohtonen, P. Lahdesmaki, and A. M. Markkola, “Cellulase Activity in Forest Humus along an Industrial Pollution Gradient in Oulu, Northern Finland,” Soil Biol. Biochem. 26(1), 97–101 (1994).

    Article  Google Scholar 

  63. O. Priha and A. Smolander, “Microbial Biomass and Activity in Soil and Litter Under Pinus sylvestris, Picea abies, and Betula pendula at Originally Similar Field Afforestation Sites,” Biol. Fertil. Soils 24(1), 45–51 (1997).

    Article  Google Scholar 

  64. C. C. Rhoades, “Single-Tree Influences on Soil Properties in Agroforestry: Lessons from Natural Forest and Savanna Ecosystems,” Agroforestry Systems 35(1), 71–94 (1997).

    Article  Google Scholar 

  65. E. Ritter, “Litter Decomposition and Nitrogen Mineralization in Newly Formed Gaps in a Danish Beech (Fagus sylvatica) Forest,” Soil Biol. Biochem. 37(7), 1237–1247 (2005).

    Article  Google Scholar 

  66. K. Ritz, “Spatial Organization of Soil Fungi,” in The Spatial Distribution of Microbes in the Environment (Springer, Dordrecht, 2007), pp. 179–202.

    Chapter  Google Scholar 

  67. S. Scheu and G. Poser, “The Soil Macrofauna (Diplopoda, Isopoda, Lumbricidae, and Chilopoda) Near Tree Trunks in a Beechwood on Limestone: Indications for Stemflow Induced Changes in Community Structure,” Appl. Soil. Ecol. 3(2), 115–125 (1996).

    Article  Google Scholar 

  68. T. V. St. John, “Influence of Litterbags on Growth of Fungal Vegetative Structures,” Oecologia 46(1) 130–132 (1980).

    Article  Google Scholar 

  69. H. Stöckli, “Influence of Stemflow upon the Decomposing System in 2 Beech Stands,” Rev. Ecol. Biol. Sol. 28(3), 265–286 (1991).

    Google Scholar 

  70. C. L. Strojan, “Forest Leaf Litter Decomposition in the Vicinity of a Zinc Smelter,” Oecologia 32(2), 203–212 (1978).

    Article  Google Scholar 

  71. M. J. Swift, O. W. Heal, and J. M. Anderson, Decomposition in Terrestrial Ecosystem, Blackwell Scientific Publication (Oxford, 1979).

    Google Scholar 

  72. A. V. Uvarov, “Effects of Constant and Fluctuating Temperature Conditions on Litter Decomposition in Laboratory Microcosms,” Acta Zool. Fenn. 196, 94–96 (1995).

    Google Scholar 

  73. A. V. Uvarov, A. V. Tiunov, and S. Scheu, “Long-Term Effects of Seasonal and Diurnal Temperature Fluctuations on Carbon Dioxide Efflux from a Forest Soil,” Soil Biol. Biochem. 38(12), 3387–3397 (2006).

    Article  Google Scholar 

  74. J. Walker, P. J. H. Sharpe, L. K. Penridge, and H. Wu, “Ecological Field Theory: the Concept and Field Tests,” Vegetatio 83(1–2), 81–95 (1989).

    Article  Google Scholar 

  75. R. Wittig, “Acidification Phenomena in Beech (Fagus sylvatica) Forests of Europe,” Water Air Soil Pollut. 31(1–2), 317–323 (1986).

    Article  Google Scholar 

  76. Q. H. Zhang and J. C. Zak, “Effects of Gap Size on Litter Decomposition and Microbial Activity in a Subtropical Forest,” Ecology 76(7), 2196–2204 (1995).

    Article  Google Scholar 

  77. P. J. Zinke, “The Pattern of Influence of Individual Forest Trees on Soil Properties,” Ecology 43(1), 130–133 (1962).

    Article  Google Scholar 

  78. E. L. Zvereva and M. V. Kozlov, “Facilitative Effects of Top-Canopy Plants on Four Dwarf Shrub Species in Habitats Severely Disturbed by Pollution,” J. Ecol. 92(2), 288–296 (2004).

    Article  Google Scholar 

  79. E. L. Zvereva and M. V. Kozlov, “Facilitation of Bilberry by Mountain Birch in Habitat Severely Disturbed by Pollution: Importance of Sheltering,” Environ. Exp. Bot. 60(2), 170–176 (2007).

    Article  Google Scholar 

  80. J. Zwolin-ski, “Rates of Organic Matter Decomposition in Forests Polluted with Heavy Metals,” Ecol. Eng. 3(1), 17–26 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Vorobeichik.

Additional information

Original Russian Text © E.L. Vorobeichik, P.G. Pishchulin, 2011, published in Pochvovedenie, 2011, No. 5, pp. 597–610.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobeichik, E.L., Pishchulin, P.G. Effect of trees on the decomposition rate of cellulose in soils under industrial pollution. Eurasian Soil Sc. 44, 547–560 (2011). https://doi.org/10.1134/S1064229311050140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229311050140

Keywords

Navigation