Log in

Multilevel Modulated Chaotic Encryption and Belief Propagation Decoding

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Due to the increasing channel capacity of multiple input multiple output (MIMO) systems, we herein propose a multilevel modulated chaotic encryption method to allow belief propagation (BP) decoding in massive MIMO systems. The proposed scheme was reconstructed based on a previous scheme: binary modulated chaotic encryption for allowing BP decoding. In the encryption method of the proposed scheme, constellation points in general multilevel modulation were encrypted by rotating them by an arbitrary angle using chaos rules. Numerical results showed that the proposed scheme has high performance with regard to the bit error ratio and security. Thus, the proposed scheme could be practical and may also increase the channel capacity of massive MIMO systems using chaotic encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. T. L. Marzetta, IEEE Trans. Wireless Commun. 9, 3590–3600 (2010).

    Article  Google Scholar 

  2. F. Rusek, D. Persson, B. K. Lau, et al., IEEE Signal Process. Mag. 30, 40–60 (2013).

    Article  Google Scholar 

  3. E. Telatar, Eur. Trans. Telecomm. 10, 585–595 (1999).

    Article  MathSciNet  Google Scholar 

  4. L. Lu, G. Y. Li, A. L. Swindlehurst, et al., IEEE J. Sel. Topics Signal Process. 8, 742–758 (2014).

    Article  Google Scholar 

  5. S. Yang and L. Hanzo, IEEE Commun. Surveys Tuts. 17, 1941–1988 (2015).

    Article  Google Scholar 

  6. B. Araújo, T. Maksymyuk, A. L. F. Almeida, et al., IET Commun. 10, 1938–1946 (2016).

    Article  Google Scholar 

  7. J. G. Proakis, Digital Communications (McGraw-Hill Education, Fourth edition, 2001).

    MATH  Google Scholar 

  8. T. H. Im, J. Kim, and Y. S. Cho, “A low complexity QRM-MLD for MIMO systems,” in Proc. IEEE Vehicular Technol. Conf. (VTC), Apr. 2007 (IEEE, New York, 2007), pp. 2243–2247.

  9. H. Kawai, K. Higuchi, N. Maeda, et al., IEICE Trans. Commun. E88-B, pp. 47–57 (2005).

    Article  Google Scholar 

  10. M. Wu, C. Dick, J. R. Cavallaro, et al., “Iterative detection and decoding in 3GPP LTE-based massive MIMO systems,” in Proc. Eur. Signal Processing Conf. (EUSIPCO), Sept. 2014 (EUSIPCO, 2014).

  11. S. Ahmed and S. Kim, IET Commun. 9, 2107–2113 (2015).

    Article  Google Scholar 

  12. S. Yoon, IEICE Trans. Commun. B E98, 890–896 (2015).

    Article  Google Scholar 

  13. F. C. K. Ngayahala, S. Ahmed, D. M. S. Bhatti, et al., J. Commun. Technol. Electron. 62, 1248–1254 (2017).

    Article  Google Scholar 

  14. P. Som, T. Datta, A. Chockalingam, et al., “Improved large-MIMO detection based on damped belief propagation,” in Proc. IEEE Trans. Inf. Theory, Jan. 2010, (IEEE, New York, 2010), pp. 1–5.

  15. W. Fukuda, T. Abiko, T. Nishimura, et al., “Low-complexity detection based on belief propagation in a massive MIMO system,” in Proc. IEEE Vehicular Technol. Conf. (VTC), June 2013 (IEEE, New York, 2013).

  16. T. Usami, T. Nishimura, T. Ohgane, et al., “BP-based detection of spatially multiplexed 16-QAM signals in a fully massive MIMO system,” in Proc. Int. Conf. on Computing, Networking and Commun. (ICNC), Feb. 2016 (ICNC, 2016).

  17. J. Yang, C. Zhang, X. Liang, et al., “Improved symbol-based belief propagation detection for large-scale MIMO,” in Proc. IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2015 (SiPS, 2015).

  18. T. Takahashi, S. Ibi, S. Sampei, et al., “On normalization of matched filter belief in GaBP for large MIMO detection,” in Proc. IEEE Vehicular Technology Conf. (VTC), Sept. 2016. (VTC, 2016).

  19. M. Bloch and J. Barros, Physical-Layer Security (Cambridge University Press, 2011).

    Book  MATH  Google Scholar 

  20. L. Dong, Z. Han, A. P. Petropulu, et al., IEEE Trans. on Signal Process. 58, 1875–1888 (2009).

    Article  Google Scholar 

  21. Y. Shiu, S. Chang, H. Wu, et al., IEEE Wireless Commun. 18, 66–74 (2011).

    Article  Google Scholar 

  22. T. L. Carroll and L. M. Pecora, IEEE Trans. Cir. Sys. 38, 453–456 (1991).

    Article  Google Scholar 

  23. G. Kaddoum M. Vu, and F. Gagnon, “Performance analysis of differential chaotic shift keying communications in MIMO systems,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), May, 2011. (ISCAS, 2011).

  24. H. Lu, L. Zhang, and M. Jiang, IEEE Commun. Lett. 19, 1726–1729 (2015).

    Article  Google Scholar 

  25. B. Okamoto, IEICE Trans. Commun. E95-B, 1384–1392 (2012).

    Article  Google Scholar 

  26. K. Sakoda, H. Hata, and S. Hata, JCTE 65, 172–175 (2020).

    Google Scholar 

  27. K. Sakoda, H. Hata, and S. Hata, IEICE Trans. Commun. J105-B, 535–542 (2022).

    Google Scholar 

Download references

Funding

The work was supported by the Telecommunications Advancement Foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sakoda.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakoda, K. Multilevel Modulated Chaotic Encryption and Belief Propagation Decoding. J. Commun. Technol. Electron. 68, 454–459 (2023). https://doi.org/10.1134/S1064226923040137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923040137

Keywords:

Navigation