Log in

Spintronic Properties of the Interface between Si(111) and 3C–SiC(111) Grown by the Method of Coordinated Substitution of Atoms

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Properties of the interface between Si(111) and 3C–SiC(111) grown by the method of coordinated substitution of atoms have been studied using the density-functional method within the spin-polarized approximation. The most favorable atomic configuration at the interface has been found. It is shown that SiC faces Si with a carbon plane, and SiC detaches 3 out of 16 Si atoms from the second layer of substrate atoms. As a result, three Si atoms in the substrate have three bonds each (instead of four), while three C atoms in the lower layer of the SiC film also have three bonds. These atoms have a magnetic moment owing to unpaired p electrons. It is established that this interface is a typical semiconductor with respect to up-spin electron and a two-dimensional ferromagnetic metal relative to down-spin electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Wiley-IEEE, Singapore, 2014), p. 75.

    Book  Google Scholar 

  2. N. T. Son, C. P. Anderson, A. Bourassa, K. C. Miao, Ch. Babin, M. Widmann, M. Niethammer, J. Ul. Hassan, N. Morioka, I. G. Ivanov, F. Kaiser, J. Wrachtrup, and D. D. Awschalom, Appl. Phys. Lett. 116, 190501 (2020). https://doi.org/10.1063/5.0004454

    Article  ADS  Google Scholar 

  3. A. Boretti, Nat. Photon. 8, 88 (2014). https://doi.org/10.1038/nphoton.2013.375

    Article  ADS  Google Scholar 

  4. H. J. von Bardeleben, S. A. Zargaleh, J. L. Cantin, W. B. Gao, T. Biktagirov, and U. Gerstmann, Phys. Rev. Mater. 3, 124605 (2019). https://doi.org/10.1103/PhysRevMaterials.3.124605

    Article  Google Scholar 

  5. S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014). https://doi.org/10.1088/0022-3727/47/31/313001

    Article  ADS  Google Scholar 

  6. S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 50, 464006 (2017). https://doi.org/10.1088/1361-6463/aa8f69

    Article  ADS  Google Scholar 

  7. L. M. Sorokin, N. V. Veselov, M. P. Shcheglov, A. E. Kalmykov, A. A. Sitnikova, N. A. Feoktistov, A. V. Osipov, and S. A. Kukushkin, Tech. Phys. Lett. 34, 992 (2008).

    Article  ADS  Google Scholar 

  8. N. T. Bagraev, S. A. Kukushkin, A. V. Osipov, V. V. Romanov, L. E. Klyachkin, A. M. Malyarenko, and V. S. Khromov, Semiconductors 55, 137 (2021). https://doi.org/10.1134/S106378262102007X

    Article  ADS  Google Scholar 

  9. N. T. Bagraev, S. A. Kukushkin, A. V. Osipov, and V. L. Ugolkov, Semiconductors 56, 321 (2022). https://doi.org/10.1134/S1063782622070016

    Article  ADS  Google Scholar 

  10. T. Tsuneda, Density Functional Theory in Quantum Chemistry (Springer, Tokio, 2014), p. 65.

    Book  MATH  Google Scholar 

  11. U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972). https://doi.org/10.1088/0022-3719/5/13/012

    Article  ADS  Google Scholar 

  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). .https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  13. J. Hafner, J. Comput. Chem. 29, 2044 (2008). https://doi.org/10.1002/jcc.21057

    Article  Google Scholar 

  14. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  ADS  Google Scholar 

  15. J. Kudrnovsky, I. Turek, V. Drchal, F. Maca, J. Masek, P. Weinberger, and P. Bruno, J. Supercond. 16, 119 (2003). https://doi.org/10.1023/A:1023257306608

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

A.V. Osipov and E.V. Osipova acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation within the framework of state order no. FFNF-2021-0001 for the Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences. S.A. Kukushkin acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation within the framework of state order no. 75746688 for St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Osipov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, S.A., Osipov, A.V. & Osipova, E.V. Spintronic Properties of the Interface between Si(111) and 3C–SiC(111) Grown by the Method of Coordinated Substitution of Atoms. Tech. Phys. Lett. 48, 263–267 (2022). https://doi.org/10.1134/S1063785022090036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785022090036

Keywords:

Navigation