Log in

Magnetite Nanocrystals with a High Magnetic Anisotropy Constant due to the Particle Shape

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Chemical solution deposition in the presence of arabinogalactan makes it possible to prepare magnetite nanocrystals in the form of square plates with a high aspect ratio (~1/9). The magnetic anisotropy constant of particles is several times higher than that of spherical magnetite particles, which enhances the hysteretic properties with a small particle volume retained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. V. Belyanina, T. N. Zamay, G. S. Zamay, S. S. Zamay, O. S. Kolovskaya, T. I. Ivanchenko, V. V. Denisenko, A. K. Kirichenko, Y. E. Glazyrin, I. V. Garanzha, V. V. Grigorieva, A. V. Shabanov, D. V. Veprintsev, A. E. Sokolov, V. M. Sadovskii, et al., Theranostics 7, 3326 (2017).

    Article  Google Scholar 

  2. Q. A. Pankhurst, N. T. K. Thanh, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 42, 224001 (2009).

    Article  ADS  Google Scholar 

  3. W. Wu, Z. Wu, T. Yu, C. Jiang, and W.-S. Kim, Sci. Technol. Adv. Mater. 16, 023501 (2015).

    Article  Google Scholar 

  4. Y. L. Raikher and V. I. Stepanov, J. Magn. Magn. Mater. 368, 421 (2014).

    Article  ADS  Google Scholar 

  5. L. Néel, Adv. Phys. 4 (14), 191 (1955).

    Article  ADS  Google Scholar 

  6. S. V. Komogortsev, T. N. Patrusheva, D. A. Balaev, E. A. Denisova, and I. V. Ponomarenko, Tech. Phys. Lett. 35, 882 (2009).

    Article  ADS  Google Scholar 

  7. S. V. Komogortsev, R. S. Iskhakov, E. A. Denisova, A. D. Balaev, V. G. Myagkov, N. V. Bulina, A. G. Kudashov, and A. V. Okotrub, Tech. Phys. Lett. 31, 454 (2005).

    Article  ADS  Google Scholar 

  8. E. A. Denisova, S. V. Komogortsev, R. S. Iskhakov, L. A. Chekanova, A. D. Balaev, Y. E. Kalinin, and A. V. Sitnikov, J. Magn. Magn. Mater. 440, 221 (2017).

    Article  ADS  Google Scholar 

  9. P. R. Chang, J. Yu, X. Ma, and D. P. Anderson, Carbohydr. Res. 83, 640 (2011).

    Article  Google Scholar 

  10. I. Khmara, O. Strbak, V. Zavisova, M. Koneracka, M. Kubovcikova, I. Antal, V. Kavecansky, D. Lucanska, D. Dobrota, and P. Kopcansky, J. Magn. Magn. Mater. 474, 319 (2019).

    Article  ADS  Google Scholar 

  11. F. Baldi, D. Marchetto, D. Battistel, S. Daniele, C. Faleri, C. de Castro, and R. Lanzetta, J. Appl. Microbiol. 107, 1241 (2009).

    Article  Google Scholar 

  12. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, O. A. Bayukov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, Tech. Phys. Lett. 41, 705 (2015).

    Article  ADS  Google Scholar 

  13. M. V. Petrova, A. S. Kiryutin, A. A. Savelov, N. N. Lukzen, H.-M. Vieth, A. V. Yurkovskaya, A. S. Bogomyakov, G. P. Aleksandrova, B. G. Sukhov, B. A. Trofimov, and V. I. Ovcharenko, Appl. Magn. Res. 41, 525 (2011).

    Article  Google Scholar 

  14. I. S. Poperechny, Y. L. Raikher, and V. I. Stepanov, Phys. B (Amsterdam, Neth.) 435, 58 (2014).

  15. H. Pfeiffer, Phys. Status Solidi A 118, 295 (1990).

    Article  ADS  Google Scholar 

  16. A. P. Safronov, I. V. Beketov, S. V. Komogortsev, G. V. Kurlyandskaya, A. I. Medvedev, D. V. Leiman, A. Larranaga, and S. M. Bhagat, AIP Adv. 3, 052135 (2013).

    Article  ADS  Google Scholar 

  17. E. C. Devi and I. Soibam, J. Alloys Compd. 772, 920 (2019).

    Article  Google Scholar 

  18. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, Jr., and S. Foner, Phys. Rev. Lett. 77, 394 (1996).

    Article  ADS  Google Scholar 

  19. N. Pérez, P. Guardia, A. G. Roca, M. P. Morales, C. J. Serna, O. Iglesias, F. Bartolomé, L. M. García, X. Batlle, and A. Labarta, Nanotecnology 19, 475704 (2008).

    Article  ADS  Google Scholar 

  20. J. S. Lee, J. M. Cha, H. Y. Yoon, J.-K. Lee, and Y. K. Kim, Sci. Rep. 5, 12135 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research, Government of Krasnoyarsk Krai, Science Foundation of Krasnoyarsk Krai within research projects nos. 18-42-240006 (“Nanomaterials with Magnetic Properties Determined by the Nanostructure Topological Features”) and 18-43-243003 (“Sonochemical Treatment of Magnetic Nanoparticles As a Way of Modifying Their Properties”) and a special program of the Ministry of Education and Science of the Russian Federation for Siberian Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stolyar.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyar, S.V., Komogortsev, S.V., Chekanova, L.A. et al. Magnetite Nanocrystals with a High Magnetic Anisotropy Constant due to the Particle Shape. Tech. Phys. Lett. 45, 878–881 (2019). https://doi.org/10.1134/S1063785019090116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785019090116

Keywords:

Navigation