Log in

Electron-Beam Modification of Carbon Steel Surface

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Mechanisms of hardening the carbon steel 45 surface after combined treatment have been elucidated. Combined treatment inclucdes electroexplosive boroaluminizing or aluminizing in the presence of silicon carbide and subsequent electron-beam processing. It has been found that the microhardness increases by seven and sic times and the wear resistance improves by 2.5 and 1.7 times, respectively. Under the conditions of dry sliding friction, the wear resistance after electroexplosive boroaluminizing and electron-beam processing increases by 43 times and after electroexplosive aluminizing in the presence of silicon carbide it rises by 12 times. It has been shown that after the combined treatment, a multiphase structure forms in the steel 45 alloying zone. This zone consists of martensite packets and lamellas; retained austenite interlayers; ferrite grains and subgrains; austenite cells; submicrometer SiC particles and Al4SiC4 nanoparticles; and AlB12, AlFe4, and Fe3Si second-phase precipitates. Surface hardening is dude to the formation of a fine-grained nonequilibrium structure containing hardening phases. Electron-beam irradiation smoothes the surface relied, “heals” microcracks, and improves functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, and V. L. Yakushin, Perspective Radiation-Beam Technologies of Material Treatment (Kruglyi God, Moscow, 2001) [in Russian].

    Google Scholar 

  2. V. A. Shulov, A. B. Belov, A. F. L’vov, et al., Fiz. Khim. Obrab. Mater., No. 2, 61 (2005).

  3. A. Ya. Bagautdinov, E. A. Budovskikh, Yu. F. Ivanov, and V. E. Gromov, Physical Foundations of Electroexplosive Alloying of Metals and Alloys (Sib. State Ind. Univ., Novokuznetsk, 2007) [in Russian].

    Google Scholar 

  4. A. V. Ionina, E. A. Budovskikh, Yu. F. Ivanov, and V. E. Gromov, Strengthening the surface of steel 45 during electro-explosive aluminization with silicon carbide and electron beam processing, Proc. 51st Int. Conf. “Current Problems of Strength,” Kharkov, May 16–20, 2011 (Kharkov Inst. Phys. Technol., Kharkov, 2011), p. 53 [in Russian].

  5. A. V. Vostretsova, Yu. F. Ivanov, S. Yu. Filimonov, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11-2, 161 (2009).

  6. Yu. F. Ivanov, Yu. A. Kolubaeva, S. Yu. Filimonov, et al., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 12, 43 (2008).

  7. A. V. Ionina, E. S. Vashchuk, S. V. Raikov, et al., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 8, 64 (2012).

  8. Yu. F. Ivanov, Yu. A. Kolubaeva, S. Yu. Filimonov, et al., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 10, 42 (2009).

  9. Yu. F. Ivanov, S. Yu. Filimonov, Yu. A. Kolubaeva, et al., Fundam. Probl. Sovrem. Materialoved., No. 2, 119 (2009).

  10. S. V. Karpii, M. M. Morozov, Yu. F. Ivanov, et al., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 8, 42 (2010).

  11. S. V. Karpii, M. M. Morozov, E. A. Budovskikh, et al., Usp. Fiz. Met. 11, 1 (2010).

    Article  Google Scholar 

  12. S. V. Karpii, Yu. F. Ivanov, N. N. Koval’, et al., Fiz. Khim. Obrab. Mater., No. 4, 24 (2010).

  13. A. M. Glauert, Practical Methods in Electron Microscopy (Elsevier, Amsterdam, 1975).

    Google Scholar 

  14. J. A. Fellows, Fractography and Atlas of Fractographs: Metals Handbook (Am. Soc. Met., Metals Park, Ohio, 1974).

    Google Scholar 

  15. L. P. Gerasimova, A. A. Ezhov, and M. I. Maresev, Structural Steel Fractures: Handbook (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  16. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray Diffraction and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  17. A. G. Kolmakov, V. F. Terent’ev, and M. B. Bakirov, Hardness Measurement Methods: Handbook, 2nd ed. (Intermet Inzhiniring, Moscow, 2005) [in Russian].

    Google Scholar 

  18. GOST (State Standard) 27964-88: Measurement of Surface Roughness Parameters. Terms and Definitions.

  19. A. V. Ionina, Enhancement of steel properties after electroblast alloying and subsequent electron-beam treatment, Proc. XIV All-Russ. School-Conf. of Young Scientists with Int. Participation “KoMU-2022,” Izhevsk, December 5–9, 2022 (Udmurt Fed. Res. Center Ural Branch Russ. Acad. Sci., Izhevsk, 2022), p. 127 [in Russian].

Download references

Funding

No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ionina.

Ethics declarations

CONFLICT OF INTEREST

The author declares that she has no conflicts of interest.

ABBREVIATIONS AND NOTATION

EA—electroexplosive alloying;

EBP—electron-beam processing;

SEM—scanning electron microscopy;

TEM—transmission electron microscopy;

rps—revolutions per second;

T(z, t)temperature distribution;

q—pulse power density, GW/m2;

τ—pulse width, µs;

N—number of EBP pulses;

d—impression diameter, mm;

S—friction path, m;

t—total EBP time.

Additional information

Translated by V. Isaakyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionina, A.V. Electron-Beam Modification of Carbon Steel Surface. Tech. Phys. (2024). https://doi.org/10.1134/S1063784224700555

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1063784224700555

Keywords:

Navigation