Log in

Simulation of an Ultrahigh-Pressure Short-Arc Xenon Discharge Plasma

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have studied a high- (ultrahigh-) pressure short-arc discharge in xenon with thoriated tungsten cathodes. A system of equations formulated based on earlier experimental data indicating possible emission of cathode material (thorium) into the discharge gap has made it possible to determine the electric field strength, plasma temperature, and concentration of thorium atoms as well as thorium and xenon ions in the plasma. The problem has been solved for a model discharge between planar electrodes. The results indicate the key role of thorium atoms in the cathode region. Thorium atoms determine the ionization balance and other electrokinetic properties of plasma. Emission of thorium atoms reduces the plasma temperature at the cathode, which turns out to be noticeably lower than the plasma temperature near the anode; this is a new result that agrees with experimental data. Other electrokinetic characteristics of the plasma (in particular, charged particle concentration and electric field strength) are also in good agreement with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. N. Rokhlin, Discharge Light Sources (Energoatomizdat, Moscow, 1991).

    Google Scholar 

  2. M. Lisnyak, M. Cunha, J. Bauchire, and M. Benolov, J. Appl. Phys. 50, 315203 (2007).

    Google Scholar 

  3. D. Nakar, A. Malul, D. Feuermann, and J. M. Gordon, Appl. Opt. 47, 224 (2008). https://doi.org/10.1364/AO.47.000224

    Article  ADS  Google Scholar 

  4. A. Malul, D. Nakar, D. Feuermann, and J. M. Gordon, Opt. Express 15, 14194 (2007).

    Article  ADS  Google Scholar 

  5. S. Kohler, R. Deissenberger, K. Eberhardt, N. Erdmann, G. Herrmann, G. Huber, J. V. Kratz, M. Nunnemann, G. Passler, P. M. Rao, J. Riegel, N. Trautmann, and K. Wendt, Spectrochim. Acta B 52, 717 (1997). https://doi.org/10.1016/S0584-8547(96)01670-9

    Article  ADS  Google Scholar 

  6. M. Neiger, R. Hoppstock, and B. Kleiner, US Patent No. 4937496 (1990).

  7. N. A. Timofeev, V. S. Sukhomlinov, G. Zissis, I. Yu. Mukharaeva, and P. Dupuis, Proc. X All-Russian Conf. on Physical Electronics, Makhachkala, Russia, 2018, p. 19.

  8. N. A. Timofeev, V. S. Sukhomlinov, G. Zissis, I. Yu. Mukharaeva, and P. Dupuis, IEEE Trans. Plasma Sci. 47, 3266 (2019).

    Article  ADS  Google Scholar 

  9. A. Bergner, F. H. Scharf, G. Kuhn, C. Ruhrmann, T. Hoebing, P. Awakowicz, and J. Mentel, Plasma Sources Sci. Technol. 23, 054005 (2014). https://doi.org/10.1088/0963-0252/23/5/054005

    Article  ADS  Google Scholar 

  10. J. L. Sillero, D. Ortega, E. Munoz-Serrano, and E. Casado, J. Phys. D: Appl. Phys. 43, 185204 (2010). https://hal.archives-ouvertes.fr/hal-00629948.

    Article  ADS  Google Scholar 

  11. J. Reinelt, M. Westermeier, C. Ruhrmann, A. Bergner, P. Awakowicz, and J. Mentel, J. Phys. D: Appl. Phys. 44, 095204 (2011). https://doi.org/10.1088/0022-3727/44/9/095204

    Article  ADS  Google Scholar 

  12. P. Zhu, J. J. Lowke, and R. Morrow, J. Phys. D: Appl. Phys. 25, 1221 (1992).

    Article  ADS  Google Scholar 

  13. J. Wendehtorr, H. Wohlfahrt, and G. Simon, Proc. 26th IEEE Int. Conf. on Plasma Science, Monterey, United States, 1999, p. 240. https://doi.org/10.1109/PLASMA.1999.829559

  14. M. Baeva, D. Uhrlandt, M. S. Benilov, and M. D. Cunha, Plasma Sources Sci. Technol. 22, 065017 (2013). https://doi.org/10.1088/0963-0252/22/6/065017

    Article  ADS  Google Scholar 

  15. M. Baeva, Plasma Chem. Plasma Process. 37, 341 (2017). https://doi.org/10.1007/s11090-017-9785-y

    Article  Google Scholar 

  16. O. B. Minayeva and D. A. Doughty, Proc 59th GEC Conf., Columbus, United States, 2006, p. RR2.00002.

  17. D. Stull, American Institute of Physics Handbook, Ed. by D. E. Gray (McGraw Hill, New York, 1972).

    Google Scholar 

  18. J. F. Waymouth, IEEE Trans. Plasma Sci. 19, 1003 (1991).

    Article  ADS  Google Scholar 

  19. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    MATH  Google Scholar 

  20. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987).

    Google Scholar 

  21. https://www.nist.gov/pml/atomic-spectra-database.

  22. R. E. Rovinskii, Svetotekhnika, No. 8, 5 (1958).

  23. J. Haidar and A. J. D. Farmer, J. Phys. D: Appl. Phys. 28, 2089 (1995).

    Article  ADS  Google Scholar 

  24. Z. Gu, X. **, J. Yang, and J. Xu, Fuel 95, 648 (2012). https://doi.org/10.1016/j.fuel.2011.12.051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Timofeev.

Ethics declarations

The authors claim that there are no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, N.A., Sukhomlinov, V.S., Zissis, G. et al. Simulation of an Ultrahigh-Pressure Short-Arc Xenon Discharge Plasma. Tech. Phys. 64, 1473–1479 (2019). https://doi.org/10.1134/S1063784219100207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219100207

Navigation