Log in

Role of electron confinement in the formation of Tamm surface levels in nanoparticles

  • Short Communications
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We study the effect of electron confinement in a nanoparticle on the parameters of Tamm’s levels. It is shown using the combination of the Tamm model and the Kronig-Penney model that an increase in the gap width in the electron spectrum of the crystal leads to an increase in the energy of the Tamm state and a decrease in the degree of localization of the wavefunction of the Tamm state. Some applications of the results on the properties of the Tamm level (e.g., the effect on the surface tension of a nanocluster, the manifestation of modifications considered here in the multiple exciton generation effect in quantum dots, the possible role of the shape of a nanoparticle during its growth, and the role of varying Tamm states in catalysis by nanoparticles) are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I. E. Tamm, Collection of Scientific Works (Nauka, Moscow, 1975), Vol. 1.

    Google Scholar 

  2. S. R. Morrison, The Chemical Physics of Surfaces (Plenum, New York, 1977).

    Book  Google Scholar 

  3. S. C. Davison and J. D. Levine, Surface (Tamm) States (Academic, New York, 1970).

    Google Scholar 

  4. Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  5. S. Flugge, Practical Quantum Mechanics (Springer, Berlin, 1971), Vol. 1.

    Book  Google Scholar 

  6. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters and Nanomaterials (KomKniga, Moscow, 2006).

    Google Scholar 

  7. V. N. Nikiforov, B. L. Oksengendler, N. N. Turaeva, et al., “Magnetic nanoparticles,” in Proceedings of the International Workshop on Low-Dimensional Nanoscale Systems, Tashkent, 2011, pp. 81–104.

  8. V. N. Nikiforov, B. L. Oksengendler, N. N. Turaeva, et al., J. Phys. Conf. Ser. 291, 012009 (2011).

    Article  ADS  Google Scholar 

  9. B. L. Oksengndler, N. N. Turaeva, and S. Sh. Rashidova, Geliotekhnika, No. 3, 36 (2009).

    Google Scholar 

  10. B. M. Sergeev, M. V. Kiryukhin, F. N. Bakhov, et al., Vestn. Mosk. Univ., Ser. 2: Khim. 42, 308 (2001).

    Google Scholar 

  11. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, et al., Usp. Khim. 74, 539 (2005).

    Article  Google Scholar 

  12. A. Z. Moshfegh, J. Phys. D.: Appl. Phys. 42, 233001 (2009).

    Article  ADS  Google Scholar 

  13. M. Haruta, Chem. Record. 3, 75 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Askarov.

Additional information

Original Russian Text © B.L. Oksengendler, B. Askarov, V.N. Nikiforov, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 10, pp. 156–158.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oksengendler, B.L., Askarov, B. & Nikiforov, V.N. Role of electron confinement in the formation of Tamm surface levels in nanoparticles. Tech. Phys. 59, 1573–1575 (2014). https://doi.org/10.1134/S1063784214100235

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214100235

Keywords

Navigation