Log in

Changes in the Magnetic Structure of Multiferroic BiFe0.80Cr0.20O3 with Temperature

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of a Mössbauer study of the magnetic structure of multiferroic BiFe0.80Cr0.20O3 in the temperature range of 5–550 K are presented. It is found that a collinear antiferromagnetic structure of the G type is present in BiFe0.80Cr0.20O3 at temperatures below 260 K. Above 260 K, an anharmonic spin wave with a magnetic anisotropy of the easy-axis type with a high value of the anharmonicity parameter m arises. With a further increase in the temperature, the m parameter decreases and tends to zero at T ~ 420 K, at which a harmonic spin wave comes into existence. Above a temperature of about 420 K, the m parameter increases again and the spin wave becomes anharmonic with an easy-plane magnetic anisotropy. At the Néel temperature, TN = 505 ± 10 K, the sample undergoes a transition from the magnetically ordered to the paramagnetic state. The change in the type of magnetic anisotropy at T ~ 420 K is explained by competing contributions of different signs to the effective magnetic anisotropy constant and their different temperature dependence for the BiFe0.80Cr0.20O3 multiferroic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Venevtsev, V. V. Gagulin, and V. N. Lyubimov, Ferroelectromagnets (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  2. I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982).

    Article  ADS  Google Scholar 

  3. I. Sosnowska and A. K. Zvezdin, J. Magn. Magn. Mater. 140–144, 167 (1995).

    Article  Google Scholar 

  4. M.-M. Tehranchi, N. F. Kubrakov, and A. K. Zvezdin, Ferroelectrics 204, 181 (1997).

    Article  Google Scholar 

  5. A. V. Zalessky, A. A. Frolov, T. A. Khimich, A. A. Bush, V. S. Pokatilov, and A. K. Zvezdin, Europhys. Lett. 50, 547 (2000).

    Article  ADS  Google Scholar 

  6. V. S. Pokatilov and A. S. Sigov, J. Exp. Theor. Phys. 110, 440 (2010).

    Article  Google Scholar 

  7. I. Sosnowska and R. Przenioso, Phys. Rev. B 84, 144404 (2011).

    Article  ADS  Google Scholar 

  8. V. S. Rusakov, V. S. Pokatilov, A. S. Sigov, M. E. Matsnev, and T. V. Gubaidulina, JETP Lett. 100, 463 (2014).

    Article  ADS  Google Scholar 

  9. A. K. Zvezdin and A. P. Pyatakov, Phys. Usp. 47, 416 (2004).

    Article  ADS  Google Scholar 

  10. V. S. Rusakov, V. S. Pokatilov, A. S. Sigov, M. E. Matsnev, A. M. Gapochka, T. Yu. Kiseleva, A. E. Komarov, M. S. Shatokhin, and A. O. Makarova, Bull. Russ. Acad. Sci.: Phys. 79, 976 (2015).

    Article  Google Scholar 

  11. V. S. Rusakov, V. S. Pokatilov, A. S. Sigov, M. E. Matsnev, A. M. Gapochka, T. Yu. Kiseleva, A. E. Komarov, M. S. Shatokhin, and A. O. Makarova, Phys. Solid State 58, 102 (2016).

    Article  ADS  Google Scholar 

  12. V. S. Pokatilov, V. S. Rusakov, A. S. Sigov, A. A. Belik, M. E. Matsnev, and A. E. Komarov, Phys. Solid State 59, 443 (2017).

    Article  ADS  Google Scholar 

  13. V. S. Pokatilov, V. S. Rusakov, A. S. Sigov, and A. A. Belik, Phys. Solid State 59, 1558 (2017).

    Article  ADS  Google Scholar 

  14. V. Rusakov, V. Pokatilov, A. Sigov, M. Matsnev, and A. Pyatakov, EPJ Web Conf. 185, 07010 (2018).

    Article  Google Scholar 

  15. V. S. Rusakov, V. S. Pokatilov, A. S. Sigov, M. E. Matsnev, and A. P. Pyatakov, Dokl. Phys. 63, 223 (2018).

    Article  ADS  Google Scholar 

  16. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  17. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1622, 40 (2014).

    Article  ADS  Google Scholar 

  18. R. D. Shannon, Acta Crystalloogr., A 32, 751 (1976).

  19. S. K. Ma, Modern Theory of Critical Phenomena (Benjamin-Cummings Reading, MA, 1976).

    Google Scholar 

  20. A. A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, and E. Takayama-Muromachi, Chem. Mater. 20, 3765 (2008).

    Article  Google Scholar 

  21. C. Darie, C. Goujon, M. Bacia, H. Klein, P. Tou-lemonde, P. Bordet, and E. Syard, Solid State Sci. 12, 660 (2010).

    Article  ADS  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research (grants no. 14-02-01109a and no. 17-02-00911a) and the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 3.1489.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Pokatilov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusakov, V.S., Pokatilov, V.S., Sigov, A.S. et al. Changes in the Magnetic Structure of Multiferroic BiFe0.80Cr0.20O3 with Temperature. Phys. Solid State 61, 1030–1036 (2019). https://doi.org/10.1134/S1063783419060192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419060192

Navigation