Log in

Group III Acceptors with Shallow and Deep Levels in Silicon Carbide: ESR and ENDOR Studies

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Results of investigations of Group III acceptors (B, Al, and Ga) in crystals of silicon carbide using the most informative electron spin resonance and electron nuclear double resonance methods are presented. Structural models of the acceptors with shallow and deep levels are considered. In addition to the data obtained earlier, studies using high-frequency magnetic resonance were obtained, which allowed revealing orthorhombic deviations from the axial symmetry for the deep acceptors; theoretical analysis explains experimentally found shifts of g factors for the deep acceptors arising due to the orthorhombic deviations, which appear probably due to the Jahn–Teller effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Pensl and R. Helbig, in Festkoerperprobleme, Vol. 30 of Advances in Solid State Physics, Ed. by U. Roessler (Vieweg, Braunschweig, 1990), p.133.

  2. G. A. Lomakin, Sov. Phys. Solid State 7, 600 (1965).

    Google Scholar 

  3. M. M. Anikin, A. A. Lebedev, A. L. Syrkin, and A. V. Suvorov, Sov. Phys. Semicond. 19, 69 (1985).

    Google Scholar 

  4. H. Kuwabara and S. Yamada, Phys. Status Solidi A 30, 739 (1975).

    Article  ADS  Google Scholar 

  5. M. Ikeda, H. Matsunami, and T. Tanaka, Phys. Rev. B 22, 2842 (1980).

    Article  ADS  Google Scholar 

  6. W. Suttrop, G. Pensl, and P. Laning, Appl. Phys. A 51, 231 (1990).

    Article  ADS  Google Scholar 

  7. V. S. Ballandovich and E. N. Mokhov, Semiconductors 29, 187 (1995).

    ADS  Google Scholar 

  8. M. Ikeda, H. Matsunami, and T. Tanaka, J. Lumin. 20, 111 (1979).

    Article  Google Scholar 

  9. H. H. Woodbury and G. W. Ludwig, Phys. Rev. 124, 1083 (1961).

    Article  ADS  Google Scholar 

  10. A. G. Zubatov, I. M. Zaritskii, S. N. Lukin, E. N. Mokhov, and V. G. Stepanov, Sov. Phys. Solid State 27, 197 (1985).

    Google Scholar 

  11. K. Maier, J. Schneider, W. Wilkening, S. Leibenzeder, and R. Stein, Mater. Sci. Eng. B 11, 27 (1992).

    Article  Google Scholar 

  12. N. P. Baran, V. Ya. Bratus’, A. A. Bugai, V. S. Sikhnin, A. A. Klimov, V. M. Maksimenko, T. L. Petrenko, and V. V. Romanenko, Phys. Solid State 35, 1544 (1993).

    ADS  Google Scholar 

  13. P. G. Baranov, V. A. Khramtsov, and E. N. Mokhov, Semicond. Sci. Technol. 9, 1340 (1994).

    Article  ADS  Google Scholar 

  14. P. G. Baranov and E. N. Mokhov, Inst. Phys. Conf. Ser. 142, 293 (1996).

    Google Scholar 

  15. P. G. Baranov and E. N. Mokhov, Semicond. Sci. Technol. 11, 489 (1996).

    Article  ADS  Google Scholar 

  16. P. G. Baranov, I. V. Ilyin, and E. N. Mokhov, Solid State Commun. 100, 371 (1996).

    Article  ADS  Google Scholar 

  17. P. G. Baranov and E. N. Mokhov, Phys. Solid State 38, 798 (1996).

    ADS  Google Scholar 

  18. K. M. Lee, Le Si Dang, G. D. Watkins, and W. J. Choyke, Phys. Rev. B 32, 2273 (1985).

    Article  ADS  Google Scholar 

  19. P. G. Baranov, V. A. Vetrov, N. G. Romanov, and V. I. Sokolov, Sov. Phys. Solid State 27, 2085 (1985).

    Google Scholar 

  20. P. G. Baranov and N. G. Romanov, Appl. Magn. Reson. 2, 361 (1991).

    Article  Google Scholar 

  21. P. G. Baranov and N. G. Romanov, Mater. Sci. Forum 83–87, 1207 (1992).

    Article  Google Scholar 

  22. P. G. Baranov, Def. Dif. Forum 148–149, 129 (1997).

    Article  Google Scholar 

  23. T. Matsumoto, O. G. Poluektov, J. Schmidt, E. N. Mokhov, and P. G. Baranov, Phys. Rev. B 55, 2219 (1997).

    Article  ADS  Google Scholar 

  24. A. V. van Duijn-Arnold, T. Ikoma, O. G. Poluektov, P. G. Baranov, E. N. Mokhov, and J. Schmidt, Phys. Rev. B 57, 1607 (1998).

    Article  ADS  Google Scholar 

  25. A. van Duijn-Arnold, J. Mol, R. Verberk, J. Schmidt, E. N. Mokhov, and P. G. Baranov, Phys. Rev. B 60, 15829 (1999).

    Article  ADS  Google Scholar 

  26. T. L. Petrenko, V. V. Teslenko, and E. N. Mokhov, Sov. Phys. Semicond. 26, 874 (1992).

    Google Scholar 

  27. T. L. Petrenko, A. A. Bugai, V. G. Baryakhtar, V. V. Teslenko, and V. D. Khavryutchenko, Semicond. Sci. Technol. 9, 1849 (1994).

    Article  ADS  Google Scholar 

  28. R. Muller, M. Feege, S. Greulich-Weber, and J.-M. Spaeth, Semicond. Sci. Technol. 8, 1377 (1993).

    Article  ADS  Google Scholar 

  29. J. Reinke, R. Muller, M. Feege, S. Greulich-Weber, and J.-M. Spaeth, Mater. Sci. Forum 143–147, 63 (1994).

    Article  Google Scholar 

  30. J. Reinke, S. Greulich-Weber, J.-M. Spaeth, E. N. Kalabukhova, S. N. Lukin, and E. N. Mokhov, Inst. Phys. Conf. Ser. 137, 211 (1994).

    Google Scholar 

  31. F. J. Adrian, S. Greulich-Weber, and J.-M. Spaeth, Solid State Commun. 94, 41 (1995).

    Article  ADS  Google Scholar 

  32. N. G. Romanov, V. A. Vetrov, P. G. Baranov, E. N. Mokhov, and V. G. Oding, Sov. Tech. Phys. Lett. 11, 483 (1985).

    Google Scholar 

  33. P. G. Baranov, N. G. Romanov, V. A. Vetrov, and V. G. Oding, in Proceedings of the 20th International Conference on the Physics of Semiconductors, Ed. by E. M. Anastassakis and J. D. Joannopoulos (World Scientific, Singapore, 1990), Vol. 3, p. 1855.

    Google Scholar 

  34. P. G. Baranov, E. N. Mokhov, A. Khofshtetter, and A. Sharmann, JETP Lett. 63, 848 (1996).

    Article  ADS  Google Scholar 

  35. B. K. Meyer, A. Hofstaetter, and P. G. Baranov, Mater. Sci. Forum 264–268, 591 (1998).

    Article  Google Scholar 

  36. J. R. Morton and K. F. Preston, J. Magn. Reson. 30, 577 (1978).

    ADS  Google Scholar 

  37. A. van Duijn-Arnold, J. Schmidt, O. G. Poluektov, P.G. Baranov, and E. N. Mokhov, Phys. Rev. B 60, 15799 (1999).

    Article  ADS  Google Scholar 

  38. G. Bachelet, G. A. Baraff, and M. Schulter, Phys. Rev. B 24, 4736 (1981).

    Article  ADS  Google Scholar 

  39. S. T. Pantelides, W. A. Harrison, and F. Yndurain, Phys. Rev. B 34, 6038 (1986).

    Article  ADS  Google Scholar 

  40. H. B. Gray, Electrons and Chemical Bonding (W. A. Benjamin, New York, Amsterdam, 1965).

    Google Scholar 

  41. G. D. Watkins, Phys. Rev. 155, 802 (1967).

    Article  ADS  Google Scholar 

  42. M. Maiwald and O. F. Schirmer, Europhys. Lett. 64, 776 (2003).

    Article  ADS  Google Scholar 

  43. Le Si Dang, R. M. Lee, and G. D. Watkins, Phys. Rev. Lett. 45, 390 (1980).

    Article  ADS  Google Scholar 

  44. J. F. Scott, D. J. Toms, Le Si Dang, R. M. Lee, G. D. Watkins, and W. J. Choyke, Phys. Rev. B 23, 2029 (1981).

    Article  ADS  Google Scholar 

  45. G. W. Ludwig and H. H. Woodbury, in Solid State Physics, Ed. F. Seitz and D. Turnbull (Academic, New York, 1962), Vol. 13, p.233.

    Google Scholar 

  46. G. Feher, J. C. Hensel, and E. A. Gere, Phys. Rev. Lett. 5, 309 (1960).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Baranov.

Additional information

Original Russian Text © I.V. Il’in, Yu.A. Uspenskaya, D.D. Kramushchenko, M.V. Muzafarova, V.A. Soltamov, E.N. Mokhov, P.G. Baranov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 641–659.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, I.V., Uspenskaya, Y.A., Kramushchenko, D.D. et al. Group III Acceptors with Shallow and Deep Levels in Silicon Carbide: ESR and ENDOR Studies. Phys. Solid State 60, 644–662 (2018). https://doi.org/10.1134/S1063783418040121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418040121

Navigation