Log in

Mössbauer studies of spatial spin-modulated structure and hyperfine interactions in multiferroic Bi57Fe0.10Fe0.85Cr0.05O3

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Results of Mössbauer investigations on 57Fe nuclei in multiferroic material Bi57Fe0.10Fe0.85Cr0.05O3 in the temperature range from 5.2 to 300 K are presented. Bulk rhombohedral samples were obtained by solidstate synthesis at high pressure. Mössbauer spectra were analyzed using the model of spatial incommensurate spin-modulated structure of the cycloidal type. Information on the influence of substituting Cr cations for Fe cations on hyperfine spectral parameters was obtained: the shift and quadrupolar shift of a Mössbauer line, and isotropic and anisotropic contributions into the hyperfine magnetic field. The anharmonicity parameter m of the spatial spin-modulated structure increases almost 1.7 times at 5.2 K when BiFeO3 is doped with chromium. The data on m were used for calculation of the uniaxial magnetic anisotropy constants and their temperature dependences for pure and chromium-doped BiFeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii and V. A. Bokov, J. Appl. Phys. 35, 915 (1964).

    Article  ADS  Google Scholar 

  2. J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970).

    Article  ADS  Google Scholar 

  3. G. Catalan and J. F. Scott, Adv. Mater. (Weinheim) 21, 24633 (2009).

    Article  Google Scholar 

  4. I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982).

    Article  ADS  Google Scholar 

  5. Yu. F. Popov, A. M. Kadomtseva, S. S. Krotov, D. V. Belov, G. P. Vorob’ev, P. N. Makhov, and A. K. Zvezdin, Low Temp. Phys. 27, 478 (2001).

    Article  ADS  Google Scholar 

  6. B.-C. Luo, C.-L. Chen, Z. Xu, and Q. **e, Phys. Lett. A 374, 4265 (2010).

    Article  ADS  Google Scholar 

  7. J. B. Li, G. H. Rao, J. K. Liang, Y. H. Liu, J. Luo, and J. R. Chen, Appl. Phys. Lett. 90, 162513 (2007).

    Article  ADS  Google Scholar 

  8. S. Layek, S. Saha, and H. C. Verm, AIP Adv. 3, 032140 (2013).

    Article  ADS  Google Scholar 

  9. H. Deng, H. M. Deng, P. X. Yang, and J. H. Chu, J. Mater. Sci. Mater. Electron. 23, 1215 (2012).

    Article  Google Scholar 

  10. M. R. Suchomel, C. I. Thomas, M. Allix, M. J. Rosseinsky, A. M. Fogg, and M. F. Thomas, Appl. Phys. Lett. 90, 112909 (2007).

    Article  ADS  Google Scholar 

  11. F. G. Chang, N. Zhang, F. Yang, S. X. Wang, and G. L. Song, J. Phys. D: Appl. Phys. 40, 7799 (2007).

    Article  ADS  Google Scholar 

  12. S. S. Arafat, Chin. Phys. B 23, 066101 (2014).

    Article  ADS  Google Scholar 

  13. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  14. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1622, 40 (2014).

    Article  ADS  Google Scholar 

  15. V. S. Rusakov, V. S. Pokatilov, A. S. Sigov, M. E. Matsnev, and T. V. Gubaidulina, JETP Lett. 100 (7), 463 (2014).

    Article  ADS  Google Scholar 

  16. V. Rusakov, V. Pokatilov, A. Sigov, M. Matsnev, and T. Gubaidulina, J. Mater. Sci. Eng., B 4, 302 (2014).

    Google Scholar 

  17. V. S. Rusakov, V. S. Pokatilov, A. S. Sigov, M. E. Matsnev, A. M. Gapochka, T. Yu. Kiseleva, A. E. Komarov, M. S. Shatokhin, and A. O. Makarova, Bull. Russ. Acad. Sci.: Phys. 79 (8), 976 (2015).

    Article  Google Scholar 

  18. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  19. R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027 (1961).

    Article  ADS  Google Scholar 

  20. F. van der Woude and G. A. Sawatzky, Phys. Rev. B: Solid State 4, 3159 (1971).

    Article  ADS  Google Scholar 

  21. N. L. Huang, R. Orbach, E. Šimakek, J. Owen, and D. R. Taylor, Phys. Rev. 156, 383 (1967).

    Article  ADS  Google Scholar 

  22. Ya. A. Iosilevskii, Sov. Phys. JETP 27 (3), 495 (1968).

    ADS  Google Scholar 

  23. A. V. Zalesskii, A. K. Zvezdin, A. A. Frolov, and A. A. Bush, JETP Lett. 71 (11), 465 (2000).

    Article  ADS  Google Scholar 

  24. P. Fischer, M. Poiomsra, I. Sosnowska, and M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980).

    Article  ADS  Google Scholar 

  25. R. Przenioslo, A. Palewicz, M. Regulski, I. Sosnowska, R. M. Ibberson, and R. S. Knight, J. Phys.: Condens. Matter 18, 2069 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Pokatilov.

Additional information

Original Russian Text © V.S. Pokatilov, V.S. Rusakov, A.S. Sigov, A.A. Belik, M.E. Matsnev, A.E. Komarov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 3, pp. 433–439.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokatilov, V.S., Rusakov, V.S., Sigov, A.S. et al. Mössbauer studies of spatial spin-modulated structure and hyperfine interactions in multiferroic Bi57Fe0.10Fe0.85Cr0.05O3 . Phys. Solid State 59, 443–449 (2017). https://doi.org/10.1134/S1063783417030271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417030271

Navigation