Log in

Electronic structure and spatial distribution of the spin density of shallow nitrogen donors in the SiC lattice

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The discovery of unique magnetooptical properties of paramagnetic centers in silicon carbide, which make it possible to control spins of small arrays of centers of atomic sizes to single centers at room temperatures, using the techniques of optical detection of the magnetic resonance, posed a number of problems, among which one of the main ones is the creation of conditions under which spin relaxation effects are minimized. As studies of properties of spin nitrogen-vacancy centers in diamond showed, the main contribution to spin relaxation is made by the interaction with nitrogen donors, being a major impurity in diamond. A similar problem exists for silicon carbide, since nitrogen donors are also basic background impurities. The objective of this work is to study the spatial distribution of the spin density of nitrogen donors in two basic silicon carbide polytypes, i.e., 4H-SiC and 6H-SiC, to use this information for minimizing the interaction of nitrogen donors with paramagnetic centers in silicon carbide. The results of the study are analyzed by magnetic resonance methods; the spin density distribution on the nearest coordination spheres of nitrogen donors occupying carbon sites in silicon carbide is determined. It is concluded that paramagnetic centers in the 4H-SiC polytype, including silicon vacancies, can be more stable to the interactions with unpaired donor electrons, since electrons are not localized on the coordination sphere closest to the paramagnetic center in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski, Science (Washington) 276, 2012 (1997).

  2. F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup, A. Nizovtsev, and S. Kilin, Appl. Phys. Lett. 81, 2160 (2002).

    Article  ADS  Google Scholar 

  3. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 92, 076401 (2004).

    Article  ADS  Google Scholar 

  4. F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).

    Article  ADS  Google Scholar 

  5. D. D. Awschalom, R. Epstein, and R. Hanson, Sci. Am. 297 (4), 84 (2007).

    Article  Google Scholar 

  6. D. Di Vincenzo, Nat. Mater. 9, 468 (2010).

  7. P. G. Baranov, I. V. Il’in, E. N. Mokhov, M. V. Muzafarova, S. B. Orlinskii, and J. Schmidt, JETP Lett. 82, 441 (2005).

    Article  ADS  Google Scholar 

  8. P. G. Baranov, A. P. Bundakova, I. V. Borovykh, S. B. Orlinskii, R. Zondervan, and J. Schmidt, JETP Lett. 86, 202 (2007).

    Article  ADS  Google Scholar 

  9. J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom, Proc. Natl. Acad. Sci. USA 107, 8513 (2010).

    Article  ADS  Google Scholar 

  10. P. G. Baranov, A. P. Bundakova, A. A. Soltamova, S. B. Orlinskii, I. V. Borovykh, R. Zondervan, R. Verberk, and J. Schmidt, Phys. Rev. B: Condens. Matter 83, 125203 (2011).

    Article  ADS  Google Scholar 

  11. A. G. Smart, Phys. Today 65, 10 (2012).

    Article  ADS  Google Scholar 

  12. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, Nature (London) 479, 84 (2011).

    Article  ADS  Google Scholar 

  13. V. A. Soltamov, A. A. Soltamova, P. G. Baranov, and I. I. Proskuryakov, Phys. Rev. Lett. 108, 226402 (2012).

    Article  ADS  Google Scholar 

  14. D. Riedel, F. Fuchs, H. Kraus, S. Vath, A. Sperlich, V.Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012).

    Article  ADS  Google Scholar 

  15. F. Fuchs, V. A. Soltamov, S. Vath, P. G. Baranov, E. N.Mokhov, G. V. Astakhov, and V. Dyakonov, Sci. Rep. 3, 1637 (2013).

    Article  ADS  Google Scholar 

  16. S. Castelletto, B. C. Johnson, and A. Boretti, Adv. Opt. Mater. 1, 609 (2013).

    Article  Google Scholar 

  17. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X. L. Feng, and D. D. Awschalom, Nat. Commun. 4, 1819 (2013).

    Article  ADS  Google Scholar 

  18. T. C. Hain, F. Fuchs, V. A. Soltamov, P. G. Baranov, G. V. Astakhov, T. Hertel, and V. Dyakonov, J. Appl. Phys. 115, 133508 (2014).

    Article  ADS  Google Scholar 

  19. A. Muzha, F. Fuchs, N. V. Tarakina, D. Simin, M. Trupke, V. A. Soltamov, E. N. Mokhov, P. G. Baranov, V. Dyakonov, A. Krueger, and G. V. Astakhov, Appl. Phys. Lett. 105, 243112 (2014).

    Article  ADS  Google Scholar 

  20. H. Kraus, V. A. Soltamov, D. Riedel, S. Vath, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov, and G. V. Astakhov, Nat. Phys. 10, 157 (2014).

    Article  Google Scholar 

  21. P. V. Klimov, A. L. Falk, B. B. Buckley, and D. D. Awschalom, Phys. Rev. Lett. 112, 087601 (2014).

    Article  ADS  Google Scholar 

  22. A. L. Falk, P. V. Klimov, B. B. Buckley, V. Ivady, I. A. Abrikosov, G. Calusine, W. F. Koehl, A. Gali, and D. D. Awschalom, Phys. Rev. Lett. 112, 187601 (2014).

    Article  ADS  Google Scholar 

  23. H. Kraus, V. A. Soltamov, F. Fuchs, D. Simin, A. Sperlich, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Sci. Rep. 4, 5303 (2014).

    Article  ADS  Google Scholar 

  24. V. A. Soltamov, B. V. Yavkin, D. O. Tolmachev, R. A. Babunts, A. G. Badalyan, V. Yu. Davydov, E. N. Mokhov, I. I. Proskuryakov, S. B. Orlinskii, and P. G. Baranov, Phys. Rev. Lett. 115, 247602 (2015).

    Article  ADS  Google Scholar 

  25. A. L. Falk, P. V. Klimov, V. Ivady, K. Szasz, D. J. Christle, W. F. Koehl, A. Gali, and D. D. Awschalom, Phys. Rev. Lett. 114, 247603 (2015).

    Article  ADS  Google Scholar 

  26. S. G. Carter, O. O. Soykal, P. Dev, S. E. Economou, and E. R. Glaser, Phys. Rev. B: Condens. Matter 92, 161202 (2015).

    Article  ADS  Google Scholar 

  27. D. Simin, F. Fuchs, H. Kraus, A. Sperlich, P. G. Baranov, G. V. Astakhov, and V. Dyakonov, Phys. Rev. Appl. 4, 014009 (2015).

    Article  ADS  Google Scholar 

  28. S.-Yu. Lee, M. Niethammer, and J. Wrachtrup, Phys. Rev. B: Condens. Matter 92, 115201 (2015).

    Article  ADS  Google Scholar 

  29. D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. Hassan, N. T. Son, E. Janzen, T. Ohshima, and D. D. Awschalom, Nat. Mater. 14, 160 (2015).

    Article  ADS  Google Scholar 

  30. M. Widmann, S.-Yu. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, Li-** Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. Ali Momenzadeh, I. Gerhardt, T. Ohshima, et al., Nat. Mater. 14, 164 (2015).

    Article  ADS  Google Scholar 

  31. V. S. Vainer and V. A. Il’in, Sov. Phys. Solid State 23 (12), 2126 (1981).

    Google Scholar 

  32. G. Feher, Phys. Rev. 114, 1219 (1959).

    Article  ADS  Google Scholar 

  33. R. C. Fletcher, W. A. Yager, G. L. Pearson, and F. R. Merritt, Phys. Rev. 95, 844 (1954).

    Article  ADS  Google Scholar 

  34. J. L. Ivey and R. L. Mieher, Phys. Rev. B: Solid State 11, 849 (1975).

    Article  ADS  Google Scholar 

  35. A. V. Duijn-Arnold, J. Mol, R. Verberk, J. Schmidt, E. N. Mokhov, and P. G. Baranov, Phys. Rev. B: Condens. Matter 60, 15829 (1999).

    Article  ADS  Google Scholar 

  36. W. J. Choyke and L. Patrick, Phys. Rev. 127, 1868 (1962)

    Article  ADS  Google Scholar 

  37. W. J. Choyke, D. R. Hamilton, and L. Patrick, Phys. Rev. [Sect.] A 133, 1163 (1964).

    Article  ADS  Google Scholar 

  38. P. J. Colwell and M. V. Klein, Phys. Rev. B: Solid State 6, 498 (1972).

    Article  ADS  Google Scholar 

  39. H. H. Woodbury and G. W. Ludwig, Phys. Rev. 124, 1083 (1961)

    Article  ADS  Google Scholar 

  40. G. W. Ludwig and H. H. Woodbury, Solid State Phys. 13, 223 (1962).

    MathSciNet  Google Scholar 

  41. G. E. G. Hardeman and G. B. Gerritsen, Phys. Rev. Lett. 20, 623 (1966).

    Article  Google Scholar 

  42. L. Patrick, Phys. Rev. B: Solid State 5, 2198 (1972)

    Article  ADS  Google Scholar 

  43. L. Patrick, Phys. Rev. [Sect.] A 138, 1477 (1965).

    Article  ADS  Google Scholar 

  44. E. N. Kalabukhova, N. N. Kabdin, and S. N. Lukin, Sov. Phys. Solid State 29, 8 (1987).

    Google Scholar 

  45. S. Greulich-Weber, M. Feege, J.-M. Spaeth, E. N. Kalabukhova, S. N. Lukin, and E. N. Mokhov, Solid State Commun. 93, 393 (1995).

    Article  ADS  Google Scholar 

  46. S. Greulich-Weber, Phys. Status Solidi A 162, 95 (1997).

  47. W. Kohn and J. M. Luttinger, Phys. Rev. 97, 1721 (1955).

    Article  ADS  Google Scholar 

  48. W. Kohn, in Solid State Physics, Ed. by F. Seitz and D. Turnbull (Academic, New York, 1957), Vol. 5, pp. 257–320.

  49. A. V. Duijn-Arnold, R. Zondervan, J. Schmidt, P. G. Baranov, and E. N. Mokhov, Phys. Rev. B: Condens. Matter 64, 085206 (2001).

    Article  ADS  Google Scholar 

  50. K. Szász, X. T. Trinh, N. T. Son, E. Janzén, and A. Gali, J. Appl. Phys. 115, 073705 (2014).

    Article  ADS  Google Scholar 

  51. N. T. Son, E. Janzen, J. Isoya, and S. Yamasaki, Phys. Rev. B: Condens. Matter 70, 193207 (2004).

    Article  ADS  Google Scholar 

  52. D. V. Savchenko, E. N. Kalabukhova, V. S. Kiselev, J. Hoentsch, and A. Poppl, Phys. Status Solidi B 246, 1908 (2009).

    Article  ADS  Google Scholar 

  53. D. V. Savchenko, E. N. Kalabukhova, A. Poppl, and B. D. Shanina, Phys. Status Solidi B 249, 2167 (2012).

    Article  ADS  Google Scholar 

  54. P. G. Baranov, B. Ya. Ber, O. N. Godisov, I. V. Il’in, A. N. Ionov, E. N. Mokhov, M. V. Muzafarova, A. K. Kaliteevskii, M. A. Kaliteevskii, and P. S. Kop’ev, Phys. Solid State 47 (12), 2219 (2005).

    Article  ADS  Google Scholar 

  55. N. T. Son, J. Isoya, T. Umeda, I. G. Ivanov, A. Henry, T. Ohshima, and E. Janzen, Appl. Magn. Reson. 39, 49 (2010).

    Article  Google Scholar 

  56. J.-M. Spaeth, J. R. Niklas, and R. H. Bartram, Structural Analysis of Point Defect in Solids (Springer-Verlag, Berlin, 1992).

    Book  Google Scholar 

  57. E. N. Kalabukhova, S. N. Lukin, and W. C. Mitchel, Mater. Sci. Forum 433–436, 499 (2003).

    Article  Google Scholar 

  58. N. T. Son, J. Isoya, S. Yamasaki, and E. Janzen, in Book of Abstracts of the 5th European Conference on Silicon Carbide and Related Materials, Bolonga, Italy, August 31–September 4, 2004 (Italian National Research Council (CNR), Bologna Research Area, Bologna, 2004).

    Google Scholar 

  59. J. R. Morton and K. F. Preston, J. Magn. Reson. 30, 377 (1978).

    Google Scholar 

  60. W. V. Smith, P. P. Sorokin, I. L. Gelles, and G. J. Lasher, Phys. Rev. 115, 1546 (1959).

    Article  ADS  Google Scholar 

  61. K. L. Brower, Phys. Rev. Lett. 44, 1627 (1980).

    Article  ADS  Google Scholar 

  62. K. Murakami, H. Kuribayashi, and K. Masuda, Phys. Rev. B: Condens. Matter 38, 1589 (1988).

    Article  ADS  Google Scholar 

  63. R. P. Messmer and G. D. Watkins, Phys. Rev. B: Solid State 7, 2568 (1973).

    Article  ADS  Google Scholar 

  64. G. G. DeLeo, W. B. Fowler, and G. D. Watkins, Phys. Rev. B: Condens. Matter 29, 3193 (1984).

    Article  ADS  Google Scholar 

  65. S. T. Pantelides, W. A. Harrison, and F. Yndurain, Phys. Rev. B: Condens. Matter 34, 6038 (1986).

    Article  ADS  Google Scholar 

  66. F. G. Anderson, Phys. Rev. B: Condens. Matter 39, 5392 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Baranov.

Additional information

Original Russian Text © M.V. Muzafarova, I.V. Il’in, A.N. Anisimov, E.N. Mokhov, V.A. Soltamov, P.G. Baranov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 12, pp. 2319–2335.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzafarova, M.V., Il’in, I.V., Anisimov, A.N. et al. Electronic structure and spatial distribution of the spin density of shallow nitrogen donors in the SiC lattice. Phys. Solid State 58, 2406–2422 (2016). https://doi.org/10.1134/S1063783416120210

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416120210

Navigation