Log in

Molecular-dynamics calculation of the thermal conductivity coefficient of the germanium single crystal

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermal conductivity coefficient of the germanium crystal lattice has been calculated by molecular dynamics simulation. Calculations have been performed for both the perfect crystal lattice and the crystal lattice with defects such as monovacancies. For the perfect germanium single crystal, the dependence of the thermal conductivity coefficient on the lattice temperature has been obtained in the temperature range of 150–1000 K. The thermal conductivity coefficient of the germanium lattice has been calculated as a function of the monovacancy concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. I. Baranskii and N. S. Konoplyasova, Zh. Eksp. Teor. Fiz. 28, 1621 (1958).

    Google Scholar 

  2. B. Abeles, J. Phys. Chem. Solids 8, 340 (1959).

    Article  ADS  Google Scholar 

  3. E. D. Devyatkova and I. A. Smirnov, Sov. Phys. Solid State 2, 527 (1960).

    Google Scholar 

  4. G. A. Slack and C. J. Glassbrenner, Phys. Rev. 120, 782 (1960).

    Article  ADS  Google Scholar 

  5. C. J. Glassbrenner and G. A. Slack, Phys. Rev. [Sect.] A 134, 1058 (1964).

    ADS  Google Scholar 

  6. M. G. Holland, Phys. Rev. 132, 2461 (1963).

    Article  ADS  Google Scholar 

  7. M. A. Ansary, N. P. Singh, and B. D. Indu, Indian J. Pure Appl. Phys. 45, 27 (2007).

    Google Scholar 

  8. B. Saikia and A. Kumar, Pramana 71, 143 (2008).

    Article  ADS  Google Scholar 

  9. F. H. Stillinger and T. A. Weber, Phys. Rev. B: Condens. Matter 31, 5262 (1985).

    Article  ADS  Google Scholar 

  10. K. Ding and H. C. Andersen, Phys. Rev. B: Condens. Matter 34, 6987 (1986).

    Article  ADS  Google Scholar 

  11. Zi Jian, Zhang Kaiming, and **e **de, Phys. Rev. B: Condens. Matter 41, 129151 (1990).

    Google Scholar 

  12. M. Posselt and A. Gabriel, Phys. Rev. B: Condens. Matter 80, 045 202–1 (2009).

    Article  Google Scholar 

  13. J. I. Gersten and F. W. Smith, The Physics and Chemistry of Materials (Wiley, New York, 2001), p. 406.

    Google Scholar 

  14. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997), p. 87.

    Google Scholar 

  15. A. Tenenbaum, G. Ciccotti, and R. Gallico, Phys. Rev. A: At., Mol., Opt. Phys. 25, 2778 (1982).

    Article  ADS  Google Scholar 

  16. F. Muller-Plathe, J. Chem. Phys. 106, 6082 (1997).

    Article  ADS  Google Scholar 

  17. http://lammps.sandia.gov.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Selezenev.

Additional information

Original Russian Text © A.A. Selezenev, A.Yu. Aleinikov, P.V. Ermakov, N.S. Ganchuk, S.N. Ganchuk, R.E. Jones, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 3, pp. 436–441.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selezenev, A.A., Aleinikov, A.Y., Ermakov, P.V. et al. Molecular-dynamics calculation of the thermal conductivity coefficient of the germanium single crystal. Phys. Solid State 54, 462–467 (2012). https://doi.org/10.1134/S1063783412030286

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412030286

Keywords

Navigation