Log in

Low-energy lattice excitations in the decagonal Al-Ni-Fe and icosahedral Al-Cu-Fe quasicrystals and the (Al,Si)-Cu-Fe cubic phase

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The specific heat of decagonal Al71.3Ni24.0Fe4.7 and icosahedral Al62Cu25.5Fe12.5 quasicrystals and the Al55.0Si7.0Cu25.5Fe12.5 cubic phase approximating the structure of the icosahedral alloy has been studied in the temperature range 4.2–40.0 K. All the three compounds exhibit low coefficients of the electronic heat capacity and pronounced deviations of the low-temperature lattice heat capacity from a cubic temperature law in the range 5–10 K. The results obtained by the thermodynamic method and inelastic neutron scattering have been compared and analyzed. It has been established that, at energies ɛ < 14 meV, the spectral density of thermal vibrations in the icosahedral quasicrystal is substantially higher than those in the cubic approximant and in decagonal quasicrystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  ADS  Google Scholar 

  2. P. A. Bansel, P. A. Heiney, P. W. Stephens, A. I. Goldman, and P. M. Horn, Phys. Rev. Lett. 54, 2422 (1985).

    Article  ADS  Google Scholar 

  3. M. Quiquandon, A. Quivy, S. Lefebre, E. Elkaim, G. Heger, A. Katz, and D. Gratias, Phys. Rev. B: Condens. Matter 44, 2071 (1991).

    ADS  Google Scholar 

  4. E. Huttunen-Saarivirta, J. Alloys Compd. 363, 150 (2004).

    Article  Google Scholar 

  5. R. A. Brand, J. Pelloth, F. Hippert, and Y. Calvayrac, J. Phys.: Condens. Matter 11(39), 7523 (1999).

    Article  ADS  Google Scholar 

  6. C. L. Henley and V. Elser, Philos. Mag. B 53, L59 (1986).

    Article  Google Scholar 

  7. A. Quivy, M. Quiquandon, Y. Calvayrac, F. Faudot, D. Gratias, C. Berger, R. A. Brand, V. Simonet, and F. Hippert, J. Phys.: Condens. Matter 8(23), 4223 (1996).

    Article  ADS  Google Scholar 

  8. T. Klein, C. Berger, G. Fourcaudot, J. C. Grieco, and J. C. Lasjaunias, J. Non-Cryst. Solids 153–154, 312 (1993).

    Article  Google Scholar 

  9. K. Wang, C. Scheidt, P. Garoche, and Y. Calvayrac, J. Non-Cryst. Solids 153–154, 357 (1993).

    Article  Google Scholar 

  10. J. C. Lasjaunias, Y. Calvayrac, and H. Yang, J. Phys. I 7, 959 (1997).

    Article  Google Scholar 

  11. A. Inaba, R. Lortz, C. Meingast, J. Q. Guo, and A.-P. Tsai, J. Alloys Compd. 342, 302 (2002).

    Article  Google Scholar 

  12. C. A. Swenson, T. A. Lograsso, A. R. Ross, and N. E. Anderson, Phys. Rev. B: Condens. Matter 66, 184206 (2002).

    ADS  Google Scholar 

  13. P. P. Parshin, M. G. Zemlyanov, A. V. Mashkov, R. A. Brand, A.-J. Dianoux, and Y. Calvayrac, Fiz. Tverd. Tela (St. Petersburg) 46(3), 510 (2004) [Phys. Solid State 46 (3), 526 (2004)].

    Google Scholar 

  14. P. P. Parshin, M. G. Zemlyanov, and R. A. Brand, Zh. Éksp. Teor. Fiz. 128(4), 785 (2005) [JETP 101 (4), 676 (2005)].

    Google Scholar 

  15. P. P. Parshin, M. G. Zemlyanov, and R. A. Brand, Kristallografiya 52(3), 458 (2007) [Crystallogr. Rep. 52 (3), 436 (2007)].

    Google Scholar 

  16. V. Simonet, F. Hippert, R. A. Brand, Y. Calvayrac, J. Rodriguez-Carvajal, and A. Sadoc, Phys. Rev. B: Condens. Matter 72, 024 214 (2005).

    Google Scholar 

  17. Yu. Kagan, Zh. Éksp. Teor. Fiz. 42, 1375 (1962) [Sov. Phys. JETP 15, 954 (1962)].

    Google Scholar 

  18. V. F. Sears, Neutron News 3, 26 (1992).

    Article  Google Scholar 

  19. J. A. Ashraff and J.-M. Luck, Phys. Rev. B: Condens. Matter 41, 4314 (1990).

    ADS  Google Scholar 

  20. M. de Boissieu, K. Shibata, R. Currat, A. Q. R. Baron, S. Tsutsui, and A.-P. Tsai, J. Non-Cryst. Solids 334–335, 303 (2004).

    Google Scholar 

  21. V. S. Oskotskiĭ, Fiz. Tverd. Tela (Leningrad) 9(2), 550 (1967) [Sov. Phys. Solid State 9 (2), 420 (1967)].

    Google Scholar 

  22. S. Lyonnard, G. Coddens, Y. Calvayrac, and D. Gratias, Phys. Rev. B 53, 3150 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shikov.

Additional information

Original Russian Text © G.Kh. Panova, M.G. Zemlyanov, P.P. Parshin, A.A. Shikov, R.A. Brand, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 4, pp. 718–722.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panova, G.K., Zemlyanov, M.G., Parshin, P.P. et al. Low-energy lattice excitations in the decagonal Al-Ni-Fe and icosahedral Al-Cu-Fe quasicrystals and the (Al,Si)-Cu-Fe cubic phase. Phys. Solid State 52, 771–775 (2010). https://doi.org/10.1134/S1063783410040165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410040165

Keywords

Navigation