Log in

On the Lateral Recrystallization of Amorphous Silicon Nanostructures Using Nickel Silicide

  • TECHNOLOGICAL PROCESSES AND ROUTES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The method of metal-induced lateral recrystallization is an urgent research task for manufacturing integrated circuits of multilevel architecture, sensitive elements of sensors, as well as electronic microsystems and nanosystems. An optimized method of metal-induced lateral crystallization (MILC) of amorphous-silicon nanowire structures using nickel silicide is presented. On the basis of this method, nanowire n-channel field-effect gate-all-around (GAA) MILC transistors are manufactured. Similar structures are manufactured on the basis of single-crystal silicon using SOI (SIMOX) substrates, i.e., SOI GAA transistors. A comparative analysis of the electrical characteristics of field-effect nanowire GAA transistors based on recrystallized and single-crystal silicon is carried out. It is shown that the electrical characteristics of nanowire MILC GAA transistors are comparable to those of nanowire SOI GAA transistors. Thus, the measured electron mobility in weak fields amounts to 130 cm2/(V s) for the MILC GAA transistor and 200 cm2/(V s) for the SOI GAA transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. le Borgne, L. Pichon, M. Thomas, and A. C. Salaün, Phys. Status Solidi A 213, 2890 (2016).

    Article  ADS  Google Scholar 

  2. G. Li, Y. Zohar, and M. Wong, J. Micromech. Microeng. 14, 1352 (2004).

    Article  ADS  Google Scholar 

  3. V. W. C. Chan, P. C. H. Chan, and M. Chan, IEEE Electron Dev. Lett. 22, 77 (2001).

    Article  ADS  Google Scholar 

  4. C. F. Cheng, M. C. Poon, C. W. Kok, and M. Chan, in Proceedings of the International Electron Devices Meeting (IEEE, 2002), p. 569.

  5. J. Jang, S. J. Park, K. H. Kim, et al., J. Appl. Phys. 88, 3099 (2000).

    Article  ADS  Google Scholar 

  6. J. Jang, Solid State Phenom. 93, 199 (2003).

    Article  Google Scholar 

  7. Z. **, A. Bhat Gururaj, M. Yeung, et al., J. Appl. Phys. 84, 194 (1998).

    Article  ADS  Google Scholar 

  8. FinFETs and Other Multi-Gate Transistors, Ed. by J. P. Colinge (Springer, New York, 2008), Vol. 73.

    Google Scholar 

  9. E. V. Kuznetsov and E. N. Rybachek, RF Patent No. 2435730 (2010).

  10. D. Bauza and G. Ghibaudo, Microelectron. J. 25, 41 (1994).

    Article  Google Scholar 

  11. Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Nano Lett. 2, 101 (2002).

    Article  ADS  Google Scholar 

  12. K. Keem, D. Y. Jeong, and S. Kim, Nano Lett. 6, 1454 (2006).

    Article  ADS  Google Scholar 

Download references

Funding

The work  was supported by the Ministry of Education and Science of the Russian Federation (state order no. 0N59-2019-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Gubanova.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belostotskaya, S.O., Kuznetsov, E.V., Rybachek, E.N. et al. On the Lateral Recrystallization of Amorphous Silicon Nanostructures Using Nickel Silicide. Semiconductors 54, 1784–1790 (2020). https://doi.org/10.1134/S1063782620130035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620130035

Keywords:

Navigation