Log in

Thermodynamic Description of Oscillations of the Magnetization of a Silicon Nanostructure in Weak Fields at Room Temperature. Density of States

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The observation of de Haas–van Alphen oscillations when studying the silicon nanostructure at room temperature in weak magnetic fields enables the use of thermodynamic relations to calculate the density of states at the Fermi level at critical values of external magnetic-field strengths for integer filling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. T. Bagraev, V. Yu. Grigoryev, L. E. Klyachkin, A. M. Malyarenko, V. A. Mashkov, and V. V. Romanov, Semiconductors 50, 1025 (2016).

    Article  ADS  Google Scholar 

  2. N. T. Bagraev, L. E. Klyachkin, V. V. Romanov, and A. I. Ryskin, Low Temp. Phys. 40, 352 (2014).

    Article  ADS  Google Scholar 

  3. N. T. Bagraev, V. Yu. Grigoryev, L. E. Klyachkin, A. M. Malyarenko, V. A. Mashkov, V. V. Romanov, and N. I. Rul’, Low Temp. Phys. 43, 1 (2017).

    Article  Google Scholar 

  4. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, 1984).

    Book  Google Scholar 

  5. E. Gornik, R. Lassing, G. Strasser, H. L. Stormer, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 54, 1820 (1985).

    Article  ADS  Google Scholar 

  6. T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 37, 1044 (1974).

    Article  ADS  Google Scholar 

  7. W. Zawadzki and R. Lassnig, Solid State Commun. 50, 537 (1984).

    Article  ADS  Google Scholar 

  8. S. A. J. Wiegers, M. Specht, L. P. Levy, M. Y. Simmons, D. A. Ritchie, A. Cavanna, B. Etienne, G. Martinez, and P. Wyder, Phys. Rev. Lett. 79, 3238 (1997).

    Article  ADS  Google Scholar 

  9. K. von Klitzing and G. Ebert, Phys. B (Utrecht) 117–118, 682 (1983).

  10. B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

    Article  ADS  Google Scholar 

  11. L. Spies, W. Apel, and B. Kramer, Phys. Rev. B 55, 4057 (1997).

    Article  ADS  Google Scholar 

  12. M. P. Schwarz, M. A. Wilde, S. Groth, D. Grundler, Ch. Heyn, and D. Heitmann, Phys. Rev. B 65, 245315 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Bagraev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, V.V., Kozhevnikov, V.A. & Bagraev, N.T. Thermodynamic Description of Oscillations of the Magnetization of a Silicon Nanostructure in Weak Fields at Room Temperature. Density of States. Semiconductors 53, 1633–1636 (2019). https://doi.org/10.1134/S106378261916022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261916022X

Keywords:

Navigation