Log in

Dielectric properties of DNA oligonucleotides on the surface of silicon nanostructures

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Planar silicon nanostructures that are formed as a very narrow silicon quantum well confined by δ barriers heavily doped with boron are used to study the dielectric properties of DNA oligonucleotides deposited onto the surface of the nanostructures. The capacitance characteristics of the silicon nanostructures with oligonucleotides deposited onto their surface are determined by recording the local tunneling current–voltage characteristics by means of scanning tunneling microscopy. The results show the possibility of identifying the local dielectric properties of DNA oligonucleotide segments consisting of repeating G–C pairs. These properties apparently give grounds to correlate the segments with polymer molecules exhibiting the properties of multiferroics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. R. Mardis, Ann. Rev. Analyt. Chem. 6, 287 (2013).

    Article  ADS  Google Scholar 

  2. C. Toumazou, L. M. Shepherd, and S. C. Reed, Nat. Meth. 10, 641 (2013).

    Article  Google Scholar 

  3. J. M. Rothberg, W. Hinz, and T. M. Rearick, Nature 475, 348 (2011).

    Article  Google Scholar 

  4. C. W. Fuller, L. R. Middendorf, S. A. Benner, G. M. Church, T. Harris, X. Huang, S. B. Jovanovich, J. R. Nelson, J. A. Schloss, D. C. Schwartz, and D. V. Vezenov, Nat. Biotechnol. 27, 1013 (2009).

    Article  Google Scholar 

  5. M. Muthukumar, C. Plesa, and C. Dekker, Phys. Today 68 (8), 40 (2015).

    Article  Google Scholar 

  6. C. Dekker and M. Ratner, Phys. World 8, 29 (2001).

    Article  Google Scholar 

  7. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000).

    Article  ADS  Google Scholar 

  8. A. Bezryadin, C. Dekker, and G. Schmid, Appl. Phys. Lett. 71, 1273 (1997).

    Article  ADS  Google Scholar 

  9. H. Tanaka and T. Kawai, Nat. Nanotechnol. 4, 518 (2009).

    Article  ADS  Google Scholar 

  10. N. T. Bagraev, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, and V. V. Romanov, in Superconductor, Ed. by A. Luiz (Sciyo, 2010), p. 69.

  11. N. T. Bagraev, A. L. Chernev, L. E. Klyachkin, A. M. Malyarenko, A. K. Emel’yanov, and M. V. Dubina, Fiz. Tekh. Poluprovodn. 50 (2016, in press).

  12. A. L. Chernev, N. T. Bagraev, L. E. Klyachkin, A. K. Emelyanov, and M. V. Dubina, Semiconductors 49, 944 (2015).

    Article  ADS  Google Scholar 

  13. N. T. Bagraev, A. Bouravleuv, W. Gehlhoff, L. Klyachkin, A. Malyarenko, and S. Rykov, Def. Dif. Forum 194, 673 (2001).

    Article  Google Scholar 

  14. N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klyachkin, and A. M. Malyarenko, J. Phys.: Condens. Matter 20, 164202 (2008).

    ADS  Google Scholar 

  15. N. T. Bagraev, A. D. Bouravlev, L. E. Klyachkin, A. M. Malyarenko, W. Gehlhoff, V. K. Ivanov, and I. A. Shelykh, Semiconductors 36, 439 (2002).

    Article  ADS  Google Scholar 

  16. N. T. Bagraev, A. D. Bouravlev, L. E. Klyachkin, A. M. Malyarenko, W. Gehlhoff, Yu. I. Romanov, and S. A. Rykov, Semiconductors 39, 685 (2005).

    Article  ADS  Google Scholar 

  17. N. T. Bagraev, W. Gehlhoff, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, G. A. Oganesyan, D. S. Poloskin, and V. V. Romanov, Physica C 219, 437 (2006).

    Google Scholar 

  18. N. T. Bagraev, V. A. Mashkov, E. Yu. Danilovsky, W. Gehlhoff, D. S. Gets, L. E. Klyachkin, A. A. Kudryavtsev, R. V. Kuzmin, A. M. Malyarenko, and V. V. Romanov, Appl. Magn. Reson. 39, 113 (2010).

    Article  Google Scholar 

  19. N. T. Bagraev, E. Yu. Danilovskii, L. E. Klyachkin, A. M. Malyarenko, and V. A. Mashkov, Semiconductors 46, 75 (2012).

    Article  ADS  Google Scholar 

  20. B. M. Fischer, M. Walther, and P. Jepsen, Phys. Med. Biol. 47, 3807 (2002).

    Article  Google Scholar 

  21. N. T. Bagraev, V. Yu. Grigoryev, L. E. Klyachkin, A. M. Malyarenko, V. A. Mashkov, and V. V. Romanov, Fiz. Tekh. Poluprovodn. 50, 1047 (2016).

    Google Scholar 

  22. G. Gruner, AIP Conf. Proc. 544, 462 (2000).

    Article  ADS  Google Scholar 

  23. L. Fumagalli, D. Esteban, A. Cuervo, J. L. Carrascosa, and G. Gomila, Nat. Mater. 11, 808 (2012).

    Article  ADS  Google Scholar 

  24. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Bagraev.

Additional information

Original Russian Text © N.T. Bagraev, A.L. Chernev, L.E. Klyachkin, A.M. Malyarenko, A.K. Emel’yanov, M.V. Dubina, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 10, pp. 1353–1357.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagraev, N.T., Chernev, A.L., Klyachkin, L.E. et al. Dielectric properties of DNA oligonucleotides on the surface of silicon nanostructures. Semiconductors 50, 1333–1337 (2016). https://doi.org/10.1134/S1063782616100079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616100079

Navigation