Log in

Degradation-robust 850-nm vertical-cavity surface-emitting lasers for 25Gb/s optical data transmission

  • Materials of the 3rd Symposium “Semiconductor Lasers: Physics and Technology” (St. Petersburg, October 13–16, 2012)
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Highly efficient fast vertical-cavity surface-emitting lasers (VCSELs) for the 850-nm spectral range, promising for the development of optical interconnections with a data transmission rate of 25 Gbit/s per channel, are fabricated and studied. Lasers with a selectively oxidized current aperture 6 μm in diameter demonstrate multimode lasing with a quantum efficiency of 35–45% and a threshold current of 0.5–0.7 mA in the temperature range 20–85°C. According to the results of small-signal frequency analysis, the maximum modulation frequency of the lasers exceeds 17 GHz, with the rate of its increase with current exceeding 9 GHz/mA1/2, which provides VCSEL operation at a rate of 25 Gbit/s in the entire working temperature range. Endurance tests for 3000 h did not reveal any sudden degradation of the lasers. The optical power at working point and the threshold current changed relative to that at the beginning of the tests by no more than 5 and 10%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. King, S. Intemann, and S. Wabra, Proc. SPIE 8276, 82760G (2012).

    Article  ADS  Google Scholar 

  2. S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, Electron. Lett. 45, 501 (2009).

    Article  Google Scholar 

  3. P. Westbergh, J. S. Gustavsson, B. K’ogel, E. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, Electron. Lett. 46, 1014 (2009).

    Article  Google Scholar 

  4. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  5. A. M. Nadtochiy, S. A. Blokhin, A. Mutig, J. Lott, N. N. Ledentsov, L. Ya. Karachinskii, M. V. Maximov, V. M. Ustinov, and D. Bimberg, Semiconductors 45, 679 (2011).

    Article  ADS  Google Scholar 

  6. S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, A. Haglund, A. Larsson, and A. Joel, IEEE J. Quant. Electron. 46, 504 (2010).

    ADS  Google Scholar 

  7. S. A. Blokhin, M. A. Bobrov, N. A. Maleev, A. G. Kuzmenkov, V. V. Stetsenko, M. M. Pavlov, L. Ya. Karachinskii, I. I. Novikov, Yu. M. Zadiranov, A. Yu. Egorov, and V. M. Ustinov, Semiconductors 47, 844 (2013).

    Article  ADS  Google Scholar 

  8. P. Westbergh, J. S. Gustavsson, B. Kogel, A. Haglund, A. Larsson, and A. Joel, Proc. SPIE 7952, 79520K (2011).

    Article  ADS  Google Scholar 

  9. A. M. Nadtochiy, S. A. Blokhin, A. G. Kuzmenkov, M. V. Maximov, N. A. Maleev, S. I. Troshkov, N. N. Ledentsov, V. M. Ustinov, A. Mutig, and D. Bimberg, Tech. Phys. Lett. 38, 106 (2012).

    Article  ADS  Google Scholar 

  10. Y.-C. Chang, C. S. Wang, L. A. Johansson, and L. A. Coldren, Electron. Lett. 42, 1281 (2006).

    Article  Google Scholar 

  11. Y.-C. Chang, and L. A. Coldren, IEEE J. Sel. Top. Quantum Electron. 15, 704 (2009).

    Article  Google Scholar 

  12. G. P. Agrawal, Fiber Optic Communication Systems (Wiley, 1997).

    Google Scholar 

  13. S. A. Blokhin, A. N. Smirnov, A. V. Sakharov, A. G. Gladyshev, N. V. Kryzhanovskaya, N. A. Maleev, A. E. Zhukov, E. S. Semenova, D. A. Bedarev, E. V. Nikitina, M. M. Kulagina, M. V. Maximov, N. N. Ledentsov, and V. M. Ustinov, Semiconductors 39, 748 (2005).

    Article  ADS  Google Scholar 

  14. C. Helms, I. Aeby, W. Luo, R. W. Herrick, and A. Yuen, Proc. SPIE 5364, 183 (2004).

    Article  ADS  Google Scholar 

  15. S. **e, R. Herrick, G. de Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, Proc. SPIE 4994, 173 (2003).

    Article  ADS  Google Scholar 

  16. B. M. Hawkins, R. A. Hawthorne, J. K. Guenter, J. A. Tatum, and J. R. Biard, in Proceedings of the 52nd Conference on Electronic Components and Technology (San Diego, CA, USA, May 2002), p. 540.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Blokhin, L.Ya. Karachinsky, I.I. Novikov, A.S. Payusov, A.M. Nadtochiy, M.A. Bobrov, A.G. Kuzmenkov, N.A. Maleev, N.N. Ledentsov, V.M. Ustinov, D. Bimberg, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 1, pp. 81–87.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blokhin, S.A., Karachinsky, L.Y., Novikov, I.I. et al. Degradation-robust 850-nm vertical-cavity surface-emitting lasers for 25Gb/s optical data transmission. Semiconductors 48, 77–82 (2014). https://doi.org/10.1134/S1063782614010072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614010072

Keywords

Navigation