Log in

Some aspects of positronium physics

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Some aspects of both theoretical and experimental study of the positronium system to probe physics beyond the Standard Model are reviewed. In particular, new experiments to search for the invisible decay of orthopositronium (o-Ps) with the sensitivity in the branching ratio Br(o-Ps → invisible) ≃ 10−8–10−7 are discussed. The experimental technique involves a specially designed high-efficiency pulsed slow positron beam, which is also applicable for other experiments with o-Ps in vacuum. Details of the beam design, as well as the first measurements results are presented. Possible applications of the slow-pulsed positron beam for materials research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Deutsch, Phys. Rev. 82, 455 (1951).

    Article  ADS  Google Scholar 

  2. Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003 Ed. by M. Felcini, S. N. Gninenko, A. Nyffeler, and A. Rubbia, Int. J. Mod. Phys. A 19, 3769 (2004).

  3. I. N. Meshkov, Phys. Part. Nucl. 28, 198 (1997).

    Article  Google Scholar 

  4. S. G. Karshenboim, hep-ph/0509010.

  5. M. I. Dobroliubov, S. N. Gninenko, A. Yu. Ignatiev, and V. A. Matveev, Int. J. Mod. Phys. A 8, 2859 (1993).

    Article  ADS  Google Scholar 

  6. A. Rich, Rev. Mod. Phys. 53, 127 (1981).

    Article  ADS  Google Scholar 

  7. V. V. Dvoeglazov, R. N. Faustov, and Y. N. Tyukhtyaev, Mod. Phys. Lett. A 8, 3263 (1993).

    Article  ADS  Google Scholar 

  8. S. N. Gninenko, N. V. Krasnikov, and A. Rubbia, Mod. Phys. Lett. A 17, 1713 (2002).

    Article  ADS  Google Scholar 

  9. A. Rubbia, Int. J. Mod. Phys. A 19, 3961 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003; hep-ph/0402151.

    Article  ADS  Google Scholar 

  10. S. G. Karshenboim, Int. J. Mod. Phys. A19, 3879 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003; hep-ph/0310099.

    ADS  Google Scholar 

  11. M. Skalsey, Mater. Sci. Forum 255–257, 209 (1997).

    Google Scholar 

  12. P. A. Vetter, Mod. Phys. Lett. A 19, 871 (2004); Int. J. Mod. Phys. A 19, 3865 (2004).

    Article  ADS  Google Scholar 

  13. A. A. Penin, hep-ph/0308204.

  14. W. E. Caswell, G. P. Lepage, and J. Sapirstein, Phys. Rev. Lett. 38, 488 (1977); G. S. Adkins, Phys. Rev. Lett. 76, 4903 (1996).

    Article  ADS  Google Scholar 

  15. I. Harris and L. M. Brown, Phys. Rev. 105, 1656 (1957).

    Article  ADS  MATH  Google Scholar 

  16. W. E. Caswell and G. P. Lepage, Phys. Rev. A 20, 36 (1979).

    Article  ADS  Google Scholar 

  17. I. B. Khriplovich and A. S. Yelkhovsky, Phys. Lett. B 246, 520 (1990).

    Article  ADS  Google Scholar 

  18. G. S. Adkins, R. N. Fell, and J. Sapirstein, Phys. Rev. Lett. 84, 5086 (2000); Phys. Rev. A 63, 032511 (2001).

    Article  ADS  Google Scholar 

  19. A. Czamecki, K. Melnikov, and A. Yelkhovsky, Phys. Rev. Lett. 83, 1135 (1999); Phys. Rev. A 61, 052502 (2000); G. S. Adkins, N. M. McGovern, R. N. Fell, and J. Sapirstein, hep-ph/0305251.

    Article  ADS  Google Scholar 

  20. S. G. Karshenboim, Sov. Phys. JETP 76, 541 (1993); Zh. Eksp. Teor. Fiz. 103, 1105 (1993).

    ADS  Google Scholar 

  21. B. A. Kniehl and A. A. Penin, Phys. Rev. Lett. 85, 1210 (2000); 85, 3065(E) (2000); R. Hill and G. P. Lepage, Phys. Rev. D 62, 111301 (2000); K. Melnikov and A. Yelkhovsky, Phys. Rev. D 62, 116003 (2000).

    Article  ADS  Google Scholar 

  22. G. S. Adkins and F. R. Brown, Phys. Rev. A 28, 1164 (1983); G. P. Lepage, P. B. Mackenzie, K. H. Streng, and P. M. Zerwas, Phys. Rev. A 28, 3090 (1983); G. S. Adkins and E. D. Pfahl, Phys. Rev. A 59, R915 (1999).

    Article  ADS  Google Scholar 

  23. G. S. Adkins, R. N. Fell, and J. Sapirstein, Ann. Phys. (N.Y.) 295, 136 (2002).

    Article  ADS  Google Scholar 

  24. S. Asai, S. Orito, and N. Shinohara, Phys. Lett. B 357, 475 (1995); S. Asai, O. **nouchi, and T. Kobayashi, hep-ex/0308030.

    Article  ADS  Google Scholar 

  25. R. S. Vallery, P. W. Zitzewitz, and D. W. Gidley, Phys. Rev. Lett. 90, 203402 (2003).

    Google Scholar 

  26. A. H. Al-Ramadhan and D. W. Gidley, Phys. Rev. Lett. 72, 1632 (1994).

    Article  ADS  Google Scholar 

  27. D. Sillou, Int. J. Mod. Phys. A 19, 3919 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003.

    Article  ADS  Google Scholar 

  28. C. I. Westbrook, D. W. Gidley, R. S. Conti, and A. Rich, Phys. Rev. Lett. 58, 1328 (1987).

    Article  ADS  Google Scholar 

  29. C. I. Westbrook, D. W. Gidley, R. S. Conti, and A. Rich, Phys. Rev. A 40, 5489 (1989).

    Article  ADS  Google Scholar 

  30. J. S. Nico, D. W. Gidley, A. Rich, and P. W. Zitzewitz, Phys. Rev. Lett. 65, 1344 (1990).

    Article  ADS  Google Scholar 

  31. O. **nouchi, S. Asai, and T. Kobayashi, hep-ex/0011011.

  32. O. **nouchi, S. Asai, and T. Kobayashi, Int. J. Mod. Phys. A 19, 3927 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003; Phys. Lett. B 572, 117 (2003).

    Article  ADS  Google Scholar 

  33. A. P. Mills, Jr. and G. H. Bearman, Phys. Rev. Lett. 34, 246 (1975); A. P. Mills, Jr., Phys. Rev. A 27, 262 (1983).

    Article  ADS  Google Scholar 

  34. M. W. Ritter, P. O. Egan, V. W. Hughes, and K. A. Woodle, Phys. Rev. A 30, 1331 (1984).

    Article  ADS  Google Scholar 

  35. R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952).

    Article  ADS  MATH  Google Scholar 

  36. G. T. Bodwin and D. R. Yennie, Phys. Rep. 43, 267 (1978).

    Article  ADS  Google Scholar 

  37. S. J. Brodsky and G. W. Erickson, Phys. Rev. 148, 26 (1966); R. Barbieri, J. A. Mignaco, and E. Remiddi, Nuovo Cimento A 11, 824 (1972).

    Article  ADS  Google Scholar 

  38. G. S. Adkins, M. H. T. Bui, and D. Zhu, Phys. Rev. A 37, 4071 (1988); G. S. Adkins, Y. M. Aksu, and M. H. T. Bui, Phys. Rev. A 47, 2640 (1993); G. S. Adkins, R. N. Fell, and P. M. Mitrikov, Phys. Rev. Lett. 79, 3383 (1997); A. H. Hoang, P. Labelle, and S. M. Zebarjad, Phys. Rev. Lett. 79, 3387 (1997).

    Article  ADS  Google Scholar 

  39. J. R. Sapirstein, E. A. Terray, and D. R. Yennie, Phys. Rev. D 29, 2290 (1984); K. Pachucki and S. G. Karshenboim, Phys. Rev. Lett. 80, 2101 (1998).

    Article  ADS  Google Scholar 

  40. K. Pachucki, Phys. Rev. A 56, 297 (1997); G. S. Adkins and J. Sapirstein, Phys. Rev. A 58, 3552 (1998); 61, 069902(E) (2000); A. P. Burichenko, Yad. Fiz. 64, 1709 (2001) [Phys. Atom. Nucl. 64, 1628 (2001)].

    Article  ADS  Google Scholar 

  41. A. Czarnecki, K. Melnikov, and A. Yelkhovsky, Phys. Rev. Lett. 82, 311 (1999); Phys. Rev. A 59, 4316 (1999).

    Article  ADS  Google Scholar 

  42. R. J. Hill, Phys. Rev. Lett. 86, 3280 (2001); K. Melnikov and A. Yelkhovsky, Phys. Rev. Lett. 86, 1498 (2001); B. A. Kniehl and A. A. Penin, Phys. Rev. Lett. 85, 5094 (2000).

    Article  ADS  Google Scholar 

  43. T. Kinoshita and M. Nio, Phys. Rev. Lett. 72, 3803 (1994); M. I. Eides and V. A. Shelyuto, Pis’ma Zh. Eksp. Teor. Fiz. 61, 465 (1995) [JETP Lett. 61, 478 (1995)]; Phys. Rev. A 52, 954 (1995); K. Pachucki, Phys. Rev. A 54, 1994 (1996).

    Article  ADS  Google Scholar 

  44. M. Nio and T. Kinoshita, Phys. Rev. D 55, 7267 (1997).

    Article  ADS  Google Scholar 

  45. A. Billoire, R. Lacaze, A. Morel and H. Navelet, Phys. Lett. B 78, 140 (1978); T. Muta and T. Niuya, Prog. Theor. Phys. 68, 1735 (1982); G. S. Adkins and F. R. Brown, Phys. Rev. A 28, 1164 (1983); G. P. Lepage et al., Phys. Rev. A 28, 3090 (1983); S. Adachi, BSc Thesis (Metropolitan University, Tokyo, 1990).

    Article  ADS  Google Scholar 

  46. G. S. Adkins and E. D. Pfahl, Phys. Rev. A 59, R915 (1998).

    Article  ADS  Google Scholar 

  47. G. P. Lepage et al., Phys. Rev. A 28, 3090 (1983); G. S. Adkins and F. R. Brown, Phys. Rev. A 28, 1164 (1983).

    Article  ADS  Google Scholar 

  48. T. Matsumoto et al, Phys. Rev. A 54, 1947 (1996).

    Article  ADS  Google Scholar 

  49. A. Czarnecki and S. G. Karshenboim, hep-ph/9911410.

  50. U. Amaldi, G. Carboni, B. Jonson, and J. Thun, Phys. Lett. B 153, 444 (1985).

    Article  ADS  Google Scholar 

  51. J. Yang et al., Phys. Rev. A 54, 1952 (1996).

    Article  ADS  Google Scholar 

  52. D. W. Gidley, J. S. Nico, and M. Scalsey, Phys. Rev. Lett. 66, 1302 (1991).

    Article  ADS  Google Scholar 

  53. S. Asai et al., Phys. Rev. Lett. 66, 1298 (1991).

    Article  ADS  Google Scholar 

  54. S. Asai et al., Phys. Rev. Lett. 66, 2240 (1991).

    Google Scholar 

  55. S. Asai et al., Phys. Lett. B 323, 90 (1994).

    Article  ADS  Google Scholar 

  56. M. Tsuchiaki et al., Phys. Lett. B 236, 81 (1990).

    ADS  Google Scholar 

  57. M. V. Akopyan et al., Phys. Lett. B 272, 443 (1991).

    Article  ADS  Google Scholar 

  58. T. Maeno et al., Phys. Lett. B 351, 574 (1995).

    Article  ADS  Google Scholar 

  59. S. N. Gnineko, Yu. M. Klubakov, A. A. Poblaguev, and V. E. Postoev, Phys. Lett. B 237, 287 (1990).

    Article  ADS  Google Scholar 

  60. T. Mitsui et al., Europhys. Lett. 33, 111 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  61. M. Skalsey and R. S. Conti, Phys. Rev. D 51, 6292 (1995).

    Article  ADS  Google Scholar 

  62. R. Escribano, E. Masso, and R. Toldra, Phys. Lett. B 356, 313 (1995).

    Article  ADS  Google Scholar 

  63. T. Mitsui et al., Phys. Rev. Lett. 70, 2265 (1993).

    Article  ADS  Google Scholar 

  64. A. Badertscher et al., Phys. Lett. B 452, 29 (2002); P. Crivelli, Can. J. Phys. 80, 1281 (2002).

    Article  ADS  Google Scholar 

  65. G. S. Atojan, S. N. Gninenko, V. I. Razin, and Yu. V. Ryabov, Phys. Lett. B 220, 317 (1989).

    Article  ADS  Google Scholar 

  66. P.A. Vetter and S. J. Freedman, Phys. Rev. A 66, 052505 (2002).

    Google Scholar 

  67. N. V. Krasnikov, Int. J. Mod. Phys. A 19, 3849 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003.

    Article  ADS  Google Scholar 

  68. P. A. Vetter, Mod. Phys. Lett. A 19, 871 (2004).

    Article  ADS  Google Scholar 

  69. W. Bernreuther and O. Nachttmann, Z. Phys. C 11, 235 (1981).

    Article  ADS  Google Scholar 

  70. B. K. Arbic et al., Phys. Rev. A 37, 3189 (1988).

    Article  ADS  Google Scholar 

  71. M. Scalsey and J. Van House, Phys. Rev. Lett. 67, 1993 (1991).

    Article  ADS  Google Scholar 

  72. M. Felcini, Int. J. Mod. Phys. A 19, 3853 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003; hep-ex/0404041.

    Article  ADS  Google Scholar 

  73. B. Holdom, Phys. Lett. B 166, 196 (1986).

    Article  ADS  Google Scholar 

  74. S. Davidson, S. Hannestad, and G. Raffelt, J. High Energy Phys. 0005, 003 (2000); hep-ph/0001179.

    Article  ADS  Google Scholar 

  75. M. I. Dobroliubov and A. Yu. Ignatiev, Phys. Rev. Lett. 65, 679 (1990).

    Article  ADS  Google Scholar 

  76. A. A. Prinz et al., Phys. Rev. Lett. 81, 1175 (1998).

    Article  ADS  Google Scholar 

  77. T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

    Article  ADS  Google Scholar 

  78. L. B. Okun, Int. J. Mod. Phys. A 17(Suppl. 1), 105 (2002); hep-ph/0112031.

    MATH  ADS  Google Scholar 

  79. I. Kobzarev, L. Okun, and I. Pomeranchuk, Sov. J. Nucl. Phys. 3, 837 (1966).

    Google Scholar 

  80. R. Foot, H. Lew, and R. R. Volkas, Phys. Lett. B 272, 67 (1991).

    Article  ADS  Google Scholar 

  81. Z. Berezhiani and R. Mohapatra, Phys. Rev. D 62, 6607 (1995); E. Akhmedov, Z. Berezhiani, and G. Senjanovic, Phys. Rev. Lett. 69, 3013 (1992); Z. Berezhiani, A. Dolgov, and R. N. Mohapatra, Phys. Lett. B 375, 26 (1996); Z. Berezhiani, Acta Phys. Pol. B 27, 1503 (1996).

    Article  ADS  Google Scholar 

  82. Z. Berezhiani, Int. J. Mod. Phys. A 19, 3775 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003; hep-ph/0312335.

    Article  MATH  ADS  Google Scholar 

  83. R. Foot, Int. J. Mod. Phys. A19, 3807 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003; astro-ph/0309330.

    ADS  Google Scholar 

  84. Z. Berezhiani, hep-ph/0508233; Z. Berezhiani, P. Ciarcelluti, D. Comelli, and F. L. Villante, Int. J. Mod. Phys. D 14, 107 (2005); astro-ph/03126053; P. Ciarcelluti, astro-ph/040963, astro-ph/0409630, astro-ph/0409629, astro-ph/0312607; R. Foot, astro-ph/0407623, astro-ph/0403043, astro-ph/0406257; R. Foot and R. R. Volkas, Phys. Rev. D 69, 123510 (2004); astro-ph/0407522; R. Foot and Z. K. Silagadze, astro-ph/0404515; S. L. Dubovsky and S. M. Sibiryakov, Nucl. Phys. B 691, 91 (2004); L. Bento and Z. Berezhiani, Phys. Rev. Lett. 87, 231304 (2001); hep-ph/0107281; A. Yu. Ignatiev and R. R. Volkas, Phys. Rev. D 68, 023518 (2003), hep-ph/0304260.

    Article  ADS  MATH  Google Scholar 

  85. R. Barbieri, T. Gregoire, and L. J. Hall, Preprint CERN-PH-TH-2005-162 (2005); hep-ph/0509242; Z. Chacko, Hock-Seng Goh, and R. Harnik, hep-ph/0506256; Z. Berezhiani and L. Bento, hep-ph/0507031; A. Yu. Ignatiev and R. R. Volkas, Phys. Lett B 487, 294 (2000); hep-ph/0005238.

    Article  ADS  Google Scholar 

  86. R. Foot, Acta Phys. Pol. B 32, 2253 (1991).

    ADS  Google Scholar 

  87. R. Foot and S. N. Gninenko, Phys. Lett. B 480, 171 (2000).

    Article  ADS  Google Scholar 

  88. R. Foot, A. Yu. Ignatiev, and R. R. Volkas, Phys. Lett. B 503, 355 (2001) astro-ph/0011156.

    Article  ADS  Google Scholar 

  89. S. L. Glashow, Phys. Lett. B 167, 35 (1986).

    Article  ADS  Google Scholar 

  90. S. N. Gninenko, Phys. Lett. B 326, 317 (1994).

    Article  ADS  Google Scholar 

  91. R. Foot, Phys. Rev. D 69, 036001 (2004); hep-ph/0308254.

  92. R. Bernabei et al. (DAMA Collab.), Riv. Nuovo Cimento 26, 1 (2003); astro-ph/0307403, and references therein.

    Google Scholar 

  93. E. D. Carlson and S. L. Glashow, Phys. Lett. B 193, 168 (1987).

    Article  ADS  Google Scholar 

  94. E. W. Kolb, R. N. Mohapatra, and V. L. Tepliz, Phys. Rev. Lett. 77, 3066 (1996).

    Article  ADS  Google Scholar 

  95. Z. Berezhiani, D. Comelli, and F. L. Villante, Phys. Lett. B 503, 362 (2001).

    Article  ADS  Google Scholar 

  96. S. N. Gninenko and N. V. Krasnikov, Phys. Lett. B 513, 119 (2001).

    Article  ADS  Google Scholar 

  97. S. Davidson et al., J. High Energy Phys. 0202, 037 (2002).

    Article  ADS  Google Scholar 

  98. E. D. Carlson, Nucl. Phys. B 286, 378 (1987); M. I. Dobroliubov and A. Yu. Ignatiev, Nucl. Phys. B 309, 655 (1988); M. I. Dobroliubov, Yad. Fiz. 52, 551 (1990) [Sov. J. Nucl. Phys. 52, 352 (1990)]; S. N. Gninenko and N. V. Krasnikov, Phys. Lett. B 427, 307 (1988); S. N. Gninenko and N. V. Krasnikov, Phys. Lett. B 434, 163 (1998).

    Article  ADS  Google Scholar 

  99. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1990); Phys. Rev. Lett. 83, 4690 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  100. V. A. Rubakov, Phys. Usp. 171, 913 (2001); hep-ph/0105152.

    Article  Google Scholar 

  101. I. Antoniadis, Phys. Lett. B 346, 377 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  102. N. V. Krasnikov, Phys. Lett. B 273, 246 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  103. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); I. Antoniadis et al., Phys. Lett. B 436, 257 (1998); G. F. Guidice, R. Rattazzi and J. D. Wells, Nucl. Phys. B 544, 3 (1999); G. F. Guidice, R. Rattazzi and J. D. Wells, Nucl. Phys. B 595, 250 (2001).

    Article  ADS  Google Scholar 

  104. S. L. Dubovsky, V. A. Rubakov, and P. G. Tinyakov, Phys. Rev. D 62, 105011 (2000); hep-th/0006046.

    Google Scholar 

  105. S. N. Gninenko, N. V. Krasnikov, and A. Rubbia, Phys. Rev. D 67, 075012 (2003).

    Google Scholar 

  106. L. B. Okun, hep-ph/0210052.

  107. P. Crivelli, Int. J. Mod. Phys. A 19, 3819 (2004); A. Badertscher et al., hep-ex/0404037.

    Article  ADS  Google Scholar 

  108. A. Badertscher et al., hep-ex/0311031; S. N. Gninenko, Int. J. Mod. Phys. A 19, 3833 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003.

    Article  ADS  Google Scholar 

  109. S. N. Gninenko, Int. J. Mod. Phys. A 19, 3939 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003.

    Article  ADS  Google Scholar 

  110. A. Badertscher et al., “Development of a High-efficiency Pulsed Slow Positron Beam,” submitted to Nucl. Instr. and Meth.

  111. D. W. Gidley et al., Phys. Rev. B 60, R5157 (1999).

    Article  ADS  Google Scholar 

  112. http://lepta.**r.ru.

  113. I. N. Meshkov and A. N. Skrinsky, Nucl. Instrum. Methods Phys. Res. A 379, 41 (1996).

    Article  ADS  Google Scholar 

  114. I. N. Meshkov, Nucl. Instrum. Methods Phys. Res. B 221, 168 (2004).

    Article  ADS  Google Scholar 

  115. I. N. Meshkov, Nucl. Phys. 59, 1523 (1996).

    Google Scholar 

  116. I. N. Meshkov, “Generation of Directed Flux of Positronium and Experimental Studies with Positronium inflight”, in Proceedings of Workshop “Hadronic Atoms and Positronium in Standard Model”, Dubna 1998, p. 176.

  117. S. B. Fedorenko et al., in Proceedings of EPAC, Vienna, Austria, 2000, p. 584.

  118. I. N. Meshkov et al., Nucl. Instrum. Methods Phys. Res. B 214, 186 (2004).

    Article  ADS  Google Scholar 

  119. A. Badertscher et al., Int. J. Mod. Phys. A 19, 3833 (2004); hep-ex/0311031.; S. N. Gninenko, Int. J. Mod. Phys. A 19, 3939 (2004).

    Article  Google Scholar 

  120. P. Willutzki et al., Meas. Sci. Technol. 5, 548 (1994), and references therein.

    Article  ADS  Google Scholar 

  121. R. Suzuki, T. Ohdaira, and T. Mikado, Radiat. Phys. Chem. 58, 603 (2000), and references therein.

    Article  ADS  Google Scholar 

  122. N. Oshima et al., Appl. Surf. Sci. 116, 82 (1997).

    Article  ADS  Google Scholar 

  123. E. Hamada et al., Radiat. Phys. Chem. 58, 771 (2000).

    Article  ADS  Google Scholar 

  124. H. Iijima et al., Nucl. Instrum. Methods Phys. Res. A 483, 641 (2002).

    Article  ADS  Google Scholar 

  125. N. Alberola et al., physics/0511048.

  126. N. B. Chilton and P. G. Coleman, Meas. Sci. Technol. 6, 53 (1995).

    Article  ADS  Google Scholar 

  127. Positron Beams and their Applications, Ed. by P. Coleman (World Sci., Singapore, 2000).

  128. M. Charlton and J. W. Humberston, Positron Physics (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  129. M. Charlton, Nucl. Instrum. Methods B 143, 11 (1998).

    Article  ADS  Google Scholar 

  130. P. Schultz and K. G. Lynn, Rev. Mod. Phys. 60, 701 (1988).

    Article  ADS  Google Scholar 

  131. The simulation programm is based on GEANT 4, CERN Program Library Long Writeup W5013.

  132. The code is courtesy of the group from the “Troitsk Neutrino Mass Experiment” at INR (Moscow).

  133. www.amplifiers.com.

  134. M. Tashiro et al., Radiat. Phys. Chem. 60, 529 (2001).

    Article  ADS  Google Scholar 

  135. C. Bas et al., “Positron Interaction in Polymers,” Int. J. Mod. Phys. A 19, 3951 (2004); in Proceedings of the Workshop on Positronium Physics, ETH Zürich, Switzerland, 2003.

    Article  ADS  Google Scholar 

  136. Y. C. Jean, Mater. Sci. Forum 175–178, 59 (1995); Positron Spectroscopy of Solids, Ed. by A. Dupasquier and A. P. Mills., Jr (IOS, Amsterdam), 503 (1995).

    Article  Google Scholar 

  137. Positron and Positronium Chemistry, Ed. by H. J. Ache, D. M. Schrader, and Y. C. Jean (Elsevier, Holland, 1988), p. 318.

  138. O. E. Mogensen, Positron Annihilation in Chemistry (Springer, Berlin, 1995), Springer Series in Chem. Phys., Vol. 58.

    Google Scholar 

  139. Positron Beams and their Applications, Ed. by P. Coleman (World Sci., Singapore, 2000).

  140. V. I. Grafutin and E. P. Prokop’ev, Phys. Usp. 45, 59 (2002).

    Article  ADS  Google Scholar 

  141. Principles and Applications of Positron and Positronium Chemistry, Ed. by Y. C. Jean, P. E. Mallon, and D. M. Schrader (World Sci., Singapore, 2003).

  142. D. W. Gidley et al., Phys. Rev. B 60, R5157 (1999).

    Article  ADS  Google Scholar 

  143. A. Mokrushin, I. Bardyshev, N. Serebryakova, and V. Starkov, Phys. Status Solidi A 197, 212 (2003).

    Article  ADS  Google Scholar 

  144. T. Dull et al., J. Phys. Chem. B 105, 4657 (2001).

    Article  Google Scholar 

  145. L. **e at el., Phys. Rev. Lett. 74, 4947 (1995).

    Article  ADS  Google Scholar 

  146. G. B. DeMaggio et al., Phys. Rev. Lett. 78, 1524 (1997).

    Article  ADS  Google Scholar 

  147. J. N. Sun, Y. F. Hu, W. E. Frieze, and D. W. Gidley, Radiat. Phys. Chem. 68, 345 (2003).

    Article  ADS  Google Scholar 

  148. J. N. Sun, D. W. Gidley, Y. F. Hu, et al., Appl. Phys. Lett. 81, 1447 (2002).

    Article  ADS  Google Scholar 

  149. U. Gendotti, “18F Source for Positron Beams,” PhD Thesis (ETH, Zürich, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gninenko, S.N., Krasnikov, N.V., Matveev, V.A. et al. Some aspects of positronium physics. Phys. Part. Nuclei 37, 321–346 (2006). https://doi.org/10.1134/S1063779606030038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779606030038

PACS number

Navigation