Log in

Cosmic Rays from Heavy Particle Decays

  • ELEMENTARY PARTICLES AND FIELDS / Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Multidimensional modification of gravity with a smaller mass scale of the gravitational interaction is considered. Stable by assumption dark matter particles could decay via interactions with virtual black holes. The decay rates of such processes are estimated. It is shown that with the proper fixation of the parameters the decays of these ultra-massive particles can give noticeable contribution to the flux of high energy cosmic rays in particular, near the Greisen–Zatsepin–Kuzmin limit. Such particles can also create neutrinos of very high energies observed in the existing huge underwater or ice-cube detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. K. Greisen, Phys. Rev. Lett. 16, 748 (1966). https://doi.org/10.1103/physrevlett.16.748

    Article  ADS  Google Scholar 

  2. G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966).

    ADS  Google Scholar 

  3. M. Kachelrieß, in Proc. 37th Int. Cosmic Ray Conf.-PoS(ICRC2021) (Sissa Medialab, 2022). https://doi.org/10.22323/1.395.0018

  4. G. Sigl, in Proc. Int. School of Cosmic Ray Astrophysics: 10th Course: Toward the Millennium in Astrophysics: Problems and Prospects (World Scientific, Erice, Italy, 1996), p. 31.

    Google Scholar 

  5. D. V. Semikoz et al. (Pierre Auger Collab.), in Proc. 30th Int. Cosmic Ray Conf. (Merida, Mexico, 2007), p. 433.

  6. V. Berezinsky, M. Kachelrieß, and A. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997). https://doi.org/10.1103/physrevlett.79.4302

    Article  ADS  Google Scholar 

  7. V. A. Kuzmin and V. A. Rubakov, Phys. At. Nucl. 61, 1028 (1998).

    Google Scholar 

  8. M. Birkel and S. Sarkar, Astropart. Phys. 9, 297 (1998). https://doi.org/10.1016/s0927-6505(98)00028-0

    Article  ADS  Google Scholar 

  9. V. A. Kuzmin and I. I. Tkachev, J. Exp. Theor. Phys. Lett. 68, 271 (1998). https://doi.org/10.1134/1.567858

    Article  Google Scholar 

  10. V. Kuzmin and I. Tkachev, Phys. Rev. D 59, 123006 (1999). https://doi.org/10.1103/physrevd.59.123006

  11. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980). https://doi.org/10.1016/0370-2693(80)90670-x

    Article  ADS  Google Scholar 

  12. E. V. Arbuzova, A. D. Dolgov, and A. S. Rudenko, Phys. At. Nucl. 86, 266 (2023). https://doi.org/10.1134/s1063778823030031

    Article  Google Scholar 

  13. E. Arbuzova, A. Dolgov, and R. Singh, Symmetry 13, 877 (2021). https://doi.org/10.3390/sym13050877

    Article  ADS  Google Scholar 

  14. A. Deur, S. J. Brodsky, and G. F. de Teramond, Nucl. Part. Phys. Proc. 270-272, 88 (2016). https://doi.org/10.1016/j.nuclphysbps.2016.02.019

    Article  Google Scholar 

  15. C. Bambi, A. D. Dolgov, and K. Freese, Nucl. Phys. B 763, 91 (2007). https://doi.org/10.1016/j.nuclphysb.2006.11.010

    Article  ADS  Google Scholar 

  16. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998). https://doi.org/10.1016/s0370-2693(98)00466-3

    Article  ADS  Google Scholar 

  17. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998). https://doi.org/10.1016/s0370-2693(98)00860-0

    Article  ADS  Google Scholar 

  18. V. V. Nikulin, M. A. Krasnov, and S. G. Rubin, Front. Astron. Space Sci. 9, 927144 (2022). https://doi.org/10.3389/fspas.2022.927144

  19. P. Petriakova and S. G. Rubin, Eur. Phys. J. C 82, 1048 (2022). https://doi.org/10.1140/epjc/s10052-022-10983-w

    Article  ADS  Google Scholar 

  20. Ya. B. Zeldovich, Phys. Lett. A 59, 254 (1976). https://doi.org/10.1016/0375-9601(76)90783-0

    Article  ADS  Google Scholar 

  21. Y. B. Zeldovich, Sov. Phys. J. Exp. Theor. Phys. 45, 9 (1977).

    ADS  Google Scholar 

  22. I. Tkachev, T. Fujii, D. Yu. Ivanov, C. C. H. Jui, K. Kawata, J. H. Kim, M. Yu. Kuznetsov, T. Nonaka, S. Ogio, G. I. Rubtsov, H. Sagawa, G. B. Thomson, P. G. Tinyakov, and S. Troitsky, in Proc. 37th Int. Cosmic Ray Conf.-PoS(ICRC2021) (Sissa Medialab, 2021), pp. 392. https://doi.org/10.22323/1.395.0392

  23. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097

  24. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, 1973).

    Google Scholar 

  25. A. P. Lightman, W. H. Press, R. H. Price, and S. A. Teukolsky, Problem Book in Relativity and Gravitation (Princeton Univ. Press, Princeton, N.J., 1975). https://doi.org/10.1515/9781400889013

    Book  Google Scholar 

  26. T. Faulkner, M. Tegmark, E. F. Bunn, and Yi. Mao, Phys. Rev. D 76, 63505 (2007). https://doi.org/10.1103/physrevd.76.063505

    Article  ADS  MathSciNet  Google Scholar 

  27. B. N. Latosh, J. Exp. Theor. Phys. 136, 555 (2023). https://doi.org/10.1134/S1063776123050023

    Article  ADS  Google Scholar 

  28. E. V. Arbuzova, A. D. Dolgov, and R. S. Singh, J. Cosmol. Astropart. Phys. 2019, 014 (2019). https://doi.org/10.1088/1475-7516/2019/04/014

  29. F. Halzen and A. Kheirandish, Astrophys. J. 831 (1), 12 (2016). https://doi.org/10.3847/0004-637x/831/1/12

    Article  ADS  Google Scholar 

  30. J. Stasielak et al. (Baikal-GVD Collab.), Symmetry 13, 377 (2021). https://doi.org/10.3390/sym13030377

    Article  ADS  Google Scholar 

Download references

Funding

The work by E.V. Arbuzova and A.A. Nikitenko was supported by RSF grant no. 22-22-00294.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Arbuzova, A. D. Dolgov or A. A. Nikitenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbuzova, E.V., Dolgov, A.D. & Nikitenko, A.A. Cosmic Rays from Heavy Particle Decays. Phys. Atom. Nuclei 87, 49–55 (2024). https://doi.org/10.1134/S1063778824020066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824020066

Navigation